L'utilisation d'une voie portée d'abonné au projet d'alimentation de secours Solution de l'étude de cas

Mr. G. Moumoulidis, OTE

1. Evaluation de pvf

1.1 Câble

μ inclue les charges dues aux remplacements infinis à cause de la durée de vie en plus des coûts d'exploitation et du maintenance.

inclue les charges dues seulement aux remplacements infinis.

$$\mu_c = 1 + \frac{1}{(1+i)^{T_c} - 1} + \frac{U_c}{i} = 1 + \frac{1}{1.1^{35} - 1} + \frac{0.025}{0.1} = 1.287$$

$$\vec{\mathbb{H}}_c = I + \frac{I}{(I+i)^{T_c} - I} = 1.037$$

1.2 *SCC*

$$\mu_s = 1 + \frac{1}{(1+i)^{T_s} - 1} + \frac{U_s}{i} = 1.815$$

$$\vec{\mu}_s = 1 + \frac{1}{(1+i)^{T_s} - 1} = 1.315$$

2. Evaluation des coûts

2.1 Câble

2.1.1 Coût total de base

$$A = [(coût \ d'achat) \cdot \mu_c + (génie \ civile \ \& \ coût \ de \ remplacement) \cdot \vec{\mu}_c] \cdot \lambda$$

$$= [100 \cdot 1.287 + 650 \cdot 1.037] 4 = 3212 \ UM$$

Coût total Incrément

$$B = (coût \ d'achat) \cdot \mu_c \cdot \lambda = 6.5 \cdot 1.287 \cdot 4 = 33.5 \ UM / paire$$

2.2 *SCC*

Coût total
$$\Gamma = coût$$
 d'achat $\cdot \mu_s + (installation + démontage) \cdot \vec{\mu}_s =$

$$= 30 \cdot 1.815 + 10 \cdot 1.315 = 67.6 \text{ UM} / \text{pièce}$$

Charges annuelles $\gamma = i \cdot \Gamma = 0.1 \cdot 67.6 = 6.76 \ UM \ / \ pièce \ / \ année$

3. <u>Evaluation des paramètres</u>

$$r = \ln(1+i) = 0.095$$

$$G = \frac{r \cdot A}{\gamma \cdot \lambda} = \frac{0.095 \cdot 3212}{6.76 \cdot 15} = 3.014$$

$$H = \frac{r \cdot B}{\gamma \cdot \lambda} = \frac{0.095 \cdot 33.5}{6.76 \cdot 15} = 0.0314$$

$$Y = \frac{\lambda}{r} = \frac{15}{0.095} = 157.9$$

$$Z = \frac{\gamma}{r \cdot B} = \frac{6.76}{0.095 \cdot 33.5} = 2.124$$

4. Evaluation de l'expansion de la capacité optimale et PW (toute solution de câble)

$$P = \frac{A \cdot r}{B \cdot \lambda} = \frac{3212 \cdot 0.095}{33.5 \cdot 15} = 0.607$$

$$S = \frac{\lambda}{r} \cdot \ln(1 + p + \sqrt{2P}) = 157 = 150 \text{ paires}$$

$$PW = \frac{A + B \cdot S}{1 - e^{-r \cdot S/\lambda}} = \frac{3212 + 33.5 \cdot 150}{1 - e^{-0.095 \cdot 150/15}} = 13430 \text{ UM}$$

5. <u>Evaluation de temps de secours T et l'expansion de la capacité optimale</u> (Utilisation temporaire du SCC)

Utilisant les valeurs des paramètres évalues dans les paragraphes précédents, le tableau suivant est élaboré, donnant les approximations de T et S. La procédure itérative stoppe quand deux valeurs consécutives de S diffère moins qu'une paire.

L'algorithme utilisé est le suivant:

$$T = G + H \cdot S$$
, $S = Y \cdot ln \left[Z \cdot \left(e^{r \cdot T} - 1 \right) + 1 \right]$

Comme supposition initiale de S pour commencer la procédure a été utilisée la capacité optimale pour toutes les solutions de câble.

$$S_o = 150$$
 paires

Itération	Capacité	Temps	
	S	T	
1	150	7.70	
2	188	8.89	
3	213	9.67	
4	227	10.11	
5	235	10.35	
6	240	10.52	
7	243	10.66	
8	245	10.67	
9	245	10.67	
Valeurs actuelles	250 paires	11 années	

6. Evaluation de la valeur actuelle des dépenses

Quand l'utilisation temporaire de SCC est adoptée, la valeur actuelle des dépenses est calculée par

$$PW = \frac{\frac{\lambda \cdot \gamma}{r} \left[\frac{1}{r} \cdot \left(1 - e^{-r \cdot T} \right) - T \cdot e^{-r \cdot T} \right] + \left(A + B \cdot S \right) \cdot e^{-r \cdot T}}{1 - e^{-rS/\lambda}}$$

Pour les valeurs actuelles S = 200, T = 9, on a

$$PW = \frac{\frac{15 \cdot 6.76}{0.095} \left[\frac{1}{0.095} \cdot \left(1 - e^{-0.095 \cdot 11} \right) - 11 \cdot e^{-0.095 \cdot 11} \right] + \left(3212 + 33.5 \cdot 11 \right) \cdot e^{-0.095 \cdot 11}}{1 - e^{-0.095 \cdot 250/15}}$$
$$= \frac{1067.4 \cdot \left[6.82 - 3.86 \right] + 5235}{0.795} \implies PW = 9097 \ UM$$

7. Politique optimale de secours

7.1 Utilisation temporaire de la solution *SCC*

Facilités nécessaires devraient être données pour 9 années par les moyennes de *SCC*. A la fin de la neuvième année, tous les *SCC* devraient être supprimés et un câble de secours d'une capacité de *S de 200* paires devrait être posé. La valeur actuelle des dépenses est

$$PW = 9097 \ UM$$

7.2 Solution tout-câble

Le câble optimal de secours est de 150 paires. La valeur actuelle est

$$PW = 13428 \ UM$$

L'utilisation temporaire de SCC donne des économies sur la solution tout-câble. Particulièrement, on a

$$\acute{e}$$
 conomies = $(13428 / 9097.1) \cdot 100 = 47.8\%$

On peut facilement s'assurer que l'utilisation temporaire de SCC assure une économie signifiante.

7.3 Utilisation permanente du *SCC*

La valeur actuelle de la solution permanente SCC est donnée approximativement par

$$PW = \int_{0}^{\infty} \lambda \cdot \gamma \cdot t \cdot e^{-r \cdot t} = \frac{\lambda \cdot \gamma}{r^{2}}$$

qui, pour nos exemples, devient

$$PW = \frac{15 \cdot 6.76}{0.095^2} = 11235 \text{ UM}$$

Cependant, l'utilisation permanente de SCC prouve sur la solution tout-câble par 2193 UM.

Ainsi, *SCC* doit toujours être temporairement considéré même pour les longues routes où le *SCC* permanent est prouvé.