Période Economique d'approvisionnement

Planification des Câbles à Fibres Optiques

Etude de Cas

par Mr. Moumoulidis, OTE, Athens

Le problème

Entre deux grandes villes qui sont considérées comme "centres de transit", il y a une demande pour faisceaux de circuits. La demande est générée par deux groupes de villes qui sont desservies par leur centre de transit. Le plan des villes est montré dans la Figure 1. Pour les trois prochaines années, l'accroissement de la demande est montré dans le Tableau 1. Par la supposition de l'accroissement linéaire de la demande entre les centres à longue distance, on veut déterminer la taille optimale du câble à fibre optique qui devrait être placé entre les centres de transit. Le câble à fibres optiques a été trouvé être le plus économique équipement de transmission.

On veut également déterminer:

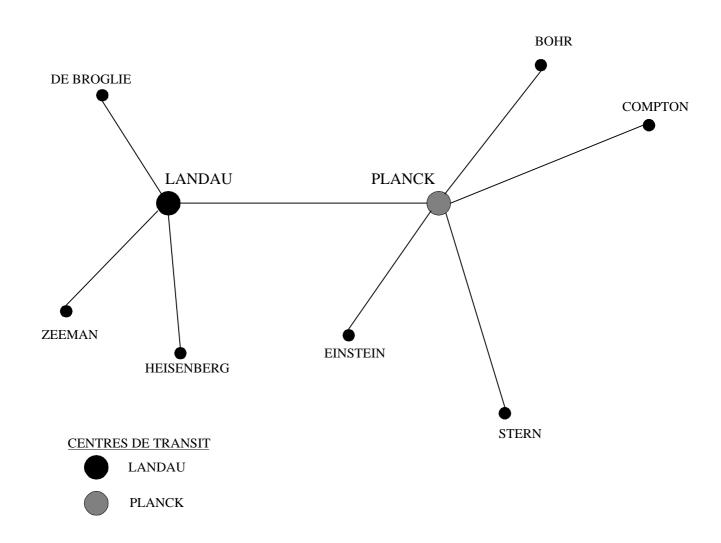
- La valeur actuelle des dépenses à la taille optimale du câble;
- La valeur actuelle des dépenses à la taille double;
- La variation du pourcentage de la valeur actuelle entre la taille double et la taille optimale du câble;
- Les charges annuelles.

Les données suivantes sont données:

Les systèmes PCM, qui sont appelés à être super-imposés sur les câbles à fibres optiques, sont du quatrième ordre. Un système équipé complètement donne 1920 circuits.

Coût du câble à fibres optiques

•	Coût de Base	600 UM / km
•	Coût Incrément	720 UM / km / paire
•	Taxes sur le coût d'achat	20 %
•	Coût de Génie Civile	750 UM / km
•	Placement du câble	80 UM/km
•	Test et épissure	15 UM/km/paire
•	Coût d'exploitation et de maintenance	3.5 %
•	Durée de vie	18 ans
•	Taux d'intérêt	10 %


• Distance entre les centres de transit 170 km

Pour des référence, voir le document correspondant.

	DE BROGLIE	ZEEMAN	HEISENBERG	LANDAU	BLANCK	BOHR	COMPTON	STERN	EINSTEIN
DE BROGLIE					50	20	25	26	25
ZEEMAN					50	75	26	25	35
HEISENBERG					72	25	25	36	25
LANDAU					95	27	75	60	80
BLANCK	45	25	75	92					
BOHR	25	25	46	25					
COMPTON	25	25	60	100					
STERN	30	25	35	50					
EINSTEIN	28	30	32	90					

Tableau 1: Circuits nécessaires pour les trois prochaines années

PLAN DES VILLES

