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1. General

Telecommunications plants must be expanded at regular time intervals, known as provisioning periods as long
as the demand for telecommunications services continue to grow. The provisioning periods and the expansion steps, at
each addition, can be chosen in different ways dependent on a number of factors.

The need for expansion is dictated by forecast, and the size of the expansion can be different for different types
of equipment. For details, see Reference [2].

2. Provisioning Period

The demand for circuits in a route is assumed to increase linearly for an infinite period at a growth of
circuits'year. At time ¢, the demand will be;

D(t)=A0 (1)
The cost of an expansion sufficiently large to cater for the demand over ¢ yearsis:
C(S)=A4+B0 2

where 4 and B are the basic and incremental cost respectively and S the size in pairs of the added plant. At time
t, when the whole plant is exhausted, the demand D should be equal to the size S of the plant. Figure 1 illustrates the
demand and the expansion pattern. The present worth of all expansion during an unlimited period of timeis
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Capacity expansions to meet linearly growing demand



Figure 2 illustrates the variation of PW as afunction of ¢ according to the Eq (3).
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For PW, there istime ¢ for which a minimum occurs. Thistime ¢ is defined as the economic period of provision.
The minimum of PW is determined by equating the first derivative to zero. Thus, we get:

M =1=(t+1,)r 4

where r = In(1+i) and t, = 4/ (BA).
An approximate solution of the above-mentioned equation is given by
t:%)\n(1+P+\/ﬁ) (5)

where P = Ar/ BA

The optimum size of the expansion cableis
S:im(uph/zp) ©6)
r

The present worth of the plant at optimum sizeis found to be:

PW:ﬂert :B_/]ers//l
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Figure 3 illustrates the variation of the optimum size as a function of demand growth.
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Example 1

The demand growth for telephone lines is 70 subs./year. The existing facilities have been completely used up.
We must place a new cable to meet the demand. What is the optimum cable size, the provisioning time and the present
worth of expenditures at optimum size?

The following data are given:

* Basiccost of cable a, =70 MU

* Incremental cost of cable b, = 116 MU / pair
» Digging cost ay =500 MU

e Jointing cost a; =50MU

* Interest rate i=10%

+ pvffor cable 1223

* servicelife 30 years

The plant cost is given as

C(S)= A+BS

We have:

0 0

A=aop+(ag+a;)H+ L Tl g56+583=669 MU
! = i1+i)7—1i5

B=b.u=1957 MU / pair

r :)\n(1+i)



The optimum time for A = 70 subs./year is evaluated as follows:

A _ 6690.095
BA 1957170

P =0.464

t= l)\n(] +P +\/2P) =933 years
r
The optimum sizeis found by:

S=At=7009.33=643=700 pairs
The present worth of expenditures of the plant for optimum sizeis given by:

_ A+BS
PW - [ — e—rS//l
We do not use Eq (7) by giving the present worth at optimum time because the calculation of optimum time
was performed approximately. Eq (7) is sensitive to time, whereas Eq (3) is not. Thus we get:

_ 669+19571700

PW ="
]— e—o.o95m00/70

=3324MU
Consider now, in our example, that we pick an incorrect time double the provisioning period. In other words,
the size of the cable is doubled. The present worth of the plant for doubled sizeis:

+
PW:ﬂ = 4008 MU
[_e—r2S//l

The percentage variation in PW, with respect to optimum size, is:

var iation = M 00 =20.5%
3324

The penalty is only 5 % for double size plant. This happens because the curve at optimum size is flat (see
Figure 2). The smaller the coefficient b, the flatter the curve and the smaller the variation in PW. From the above
reasoning, we come to the conclusion that the exact choice of optimum time is not critical.

Close to minimum value, however, the percentage of present worth may not always be an appropriate measure
of the penalty for incorrect decisions. It may be more appropriate to first substract obviously “uncontrollable”

components from the total. One such componertdsest. Whatever replacement time is adopted, the cost pairs is
unavoidable. This cost consists of infinite annuity withB MU/year.

The present worth of this infinite annuity is given by:
PWy, =AB/i

We also assume that there is some initial shortage implying that we must incur at least one basic cost:

The uncontrollable cost is:
PW, +PW, =A+AB/i=2039

The cost that is subject to optimization is:



e for optimumtime;
3324 -2039 = 1285
« for double optimum time:
4008 — 2039 = 1969
The percentage variation in PW is now:

variation = M 00 =53%
1285

This percentage is considerable. Thus the cable sizing problem incurs economics.

Example 2

The demand growth is A = 10 subs./year and the existing facilities are exhausted. There are two aternatives to
meet the demand, either to lay a buried cable or to place an aerial cable. We have for:

buried cable

e servicelife 40 years

¢ maintenance plus operating cost 2%

e basic cost 70

e digging + installation 550

¢ incremental cost 1.6 MU/pair

aerial cable

e servicelife 10 years

¢ maintenance plus operating cost 10%

e basic cost 20 MU

e instalation 280 MU

e incrementa cost 2.0 MU/pair

An average interest rate of 10 % is accepted. Which alternative should be adopted? We eva uate the present
worth of expenditures for each alternative.

Buried cable

*  Basic cost Ap
Provisioning cost a =70 MU
Digging + installation ay; = 550 MU

Present value factor
Hp =1+ ]40 +0'02 =1223
(1+00)" -1 01
| 1

0
Ap = tgay +ay [%H %z 856+ 5624 =648 MU

(1+)" -1
*  [Incremental cost Bg

Bp = pph=122306=1957 MU / pair



*  Evaluation of provisioning period

Apr _ 64810.095 _
BpA 195700

P= 315

1
tp = —)\n(] +P+ \IZP) =1995=20 years
r
e Evaluation of optimum capacity size

S=Atp=1020=200 pairs
e Evaluation of present worth

_Ap+BpS _ 648+ 196200

oS/ A [ 0095200710 =1223MU

PWy

Aerial Cable

*  Basic cost Ay
Provisioning cost a, =20 MU

Installation a; = 280 MU

Present value factor
Uy = 1+#+ﬂ:2627
(r.0)" -1 01

0 I O
Ay=a ta;,J+——0O=3525+4555 =508 MU
A alg IH[ ].]IO—]E

e Incremental cost
By=u,b, =262712=525MU / pair
*  Evaluation of provisioning period t ,

_ 4,0 508095
P=p, @~ 52510

=0. 919
1
ty = ;)\n(1+ P+\/2P) =12. 5 years
e Evaluation of optimum capacity expansion
S, =At,=100025=1250 150 pairs
e Evaluation of present worth
_Ay+ByS, _ 505+5250050

PW, = [ — o754/ = | 009530710 = 1700 MU




Comparing the PW of both alternatives, we easily find out that buried cable for the data used is more
economical. The reason for thisis that maintenance and service life are favourable for buried cables.

3. Sizing under an initial demand

We allow an initial jump in demand as shown in Figure 3 and Figure 4
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Negativeinitial demand

A positive value D, might correspond to the initial jump in demand while a negative value reflects an early

expansion forced by external factors, such as coordination with some another construction project. That is, in Figure 3,
the expansion at O time actually should have taken place D, / A time units earlier, while in Figure 4 the expansion is

assumed to be undertaken at time O, athough within the context of the mode! it really is not needed until —D, / A time
units later.



The demand can be written down as

D=D,+ A& (8)

The expansion from the second one onwards can be considered to take place when demand reaches the capacity
of facilities. Let Wy be the cost of an unlimited sequence of expansions. Figure 5 shows the cash-flow with the initial

jump. Wr isequal to the present worth in the event of linear demand with O initial demand.

A+ BS

We =TT =m @)

S isthe capacity of the cable of the second expansion onwards:
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Looking at Figure 5, the initial capacity S, is given as afunction of the next expansion T
S,=D,+AT 9

The present worth 1 of the above-mentioned expansionsis

W=C(S,)+Wr e =C(S,)+ W " (Se™Po)/ (10)

C(S, ) isthe cost of thefirst expansion. Inthe event of C(S,) being alinear function of S,

C(S,)=A+BS, (11)



Eq (10) can be written down as
W=A+BS, +Wp e (SomDo)/A

The minimum of the above-mentioned expression, with respect to y, is easily calculated
W=B+b(Y+D,)+Wpe ™' (12)

Since Wy represents the unlimited expansions at O initial demand, it gives the optimal capacity S when the
initial demand is zero. So theinitial capacity is.
/‘ VWF

Y="M
r bA

(13

The optimal size is just what the size would have been without the jump plus sufficient capacity to satisfy the
jump. Of course, if D is negative (Figure 4), Eq (9) may yield a negative amount of capacity. In this case it is not
economical to install capacity at time 0, even if the only cost of that capacity is the incremental or B cost.
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