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Abstract – With the availability of large databases and recent improvements in deep learning methodology, the 
performance of AI systems is reaching, or even exceeding, the human level on an increasing number of complex 
tasks. Impressive examples of this development can be found in domains such as image classification, sentiment 
analysis, speech understanding or strategic game playing. However, because of their nested non-linear 
structure, these highly successful machine learning and artificial intelligence models are usually applied in a 
black-box manner, i.e. no information is provided about what exactly makes them arrive at their predictions. 
Since this lack of transparency can be a major drawback, e.g. in medical applications, the development of 
methods for visualizing, explaining and interpreting deep learning models has recently attracted increasing 
attention. This paper summarizes recent developments in this field and makes a plea for more interpretability in 
artificial intelligence. Furthermore, it presents two approaches to explaining predictions of deep learning 
models, one method which computes the sensitivity of the prediction with respect to changes in the input and one 
approach which meaningfully decomposes the decision in terms of the input variables. These methods are 
evaluated on three classification tasks. 

Keywords – Artificial intelligence, black-box models, deep neural networks, interpretability, layer-wise relevance 
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poker [28]. These immense successes of AI systems, 
especially deep learning models, show the 
revolutionary character of this technology, which 
will have a large impact beyond the academic world 
and will also give rise to disruptive changes in 
industries and societies.
However, although these models reach impressive 
prediction accuracies, their nested non-linear 
structure makes them highly non-transparent, i.e. it 
is not clear what information in the input data makes 
them actually arrive at their decisions. Therefore, 
these models are typically regarded as black boxes. 
The 37th move in the second game of the historic 
Go match between Lee Sedol, a top Go player, and 
AlphaGo, an artificial intelligence system built by 
DeepMind, demonstrates the non-transparency of 
the AI system. AlphaGo played a move which was 
totally unexpected and which was commented on by 
a Go expert in the following way:

1 The terms artificial intelligence and machine learning are used 
synonymously. 

1. INTRODUCTION

The field of machine learning and artificial 
intelligence has progressed over the last few 
decades. A driving force for this development was 
the earlier improvements in support vector 
machines and more recent improvements in deep 
learning methodology [22]. Also the availability of 
large databases such as ImageNet [9] or Sports1M 
[17], the speed-up gains obtained with powerful 
GPU cards and the high flexibility of software 
frameworks such as Caffe [15] or TensorFlow [1] 
were crucial factors in the success. Today’s 
machine learning based AI systems excel in a 
number of complex tasks ranging from the detection 
of objects in images [14] and the understanding of 
natural languages [8] to the processing of speech 
signals [10]. On top of this, recent AI1 systems can 
even outplay professional human players in difficult 
strategic games such as Go [34] and Texas hold’em
 This work was supported by the German Ministry for 
Education and Research as Berlin Big Data Center (BBDC) 
(011S14013A). We thank Grégore Montavon for his valuable 
comments on the paper. 
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“It’s not a human move. I’ve never seen a human 
play this move.” (Fan Hui, 2016). 
Although during the match it was unclear why the 
system played this move, it was the deciding move 
for AlphaGo to win the game. In this case the 
black-box character of the AlphaGo did not matter, 
but in many applications the impossibility of 
understanding and validating the decision process of 
an AI system is a clear drawback. For instance, in 
medical diagnosis, it would be irresponsible to trust 
predictions of a black-box system by default. Instead, 
every far-reaching decision should be made 
accessible for appropriate validation by a human 
expert. Also in self-driving cars, where a single 
incorrect prediction can be very costly, the reliance 
of the model on the right features must be guaranteed. 
The use of explainable and human interpretable AI 
models is a prerequisite for providing such a 
guarantee. More discussion on the necessity of 
explainable AI can be found in clause 2. 
Unsurprisingly, the development of techniques for 
“opening” black-box models has recently received a 
lot of attention in the community [6, 35, 39, 5, 33, 25, 
23, 30, 40, 11, 27]. This includes the development of 
methods which help to better understand what the 
model has learned (i.e. its representation) [12, 24, 29], 
as well as techniques for explaining individual 
predictions [19, 35, 39, 5, 26]. A tutorial on methods 
from these two categories can be found in [27]. Note 
that explainability is also important for support 
vector machines and other advanced 
machine learning techniques beyond neural 
networks [20]. 
The main goal of this paper is to foster awareness for 
the necessity of explainability in machine learning 
and artificial intelligence. This is done in clause 2. 
After that in clause 3, we present two recent 
techniques, namely sensitivity analysis (SA) [6, 35] 
and layer-wise relevance propagation (LRP) [5], for 
explaining the individual predictions of an AI model 
in terms of input variables. The question of how to 
objectively evaluate the quality of explanations is 
addressed in clause 4 and results from image, text 
and video classification experiments are presented in 
clause 5. The paper concludes with an outlook on 
future work in clause 6. 

2. WHY DO WE NEED EXPLAINABLE
AI?

The ability to explain the rationale behind one’s 
decisions to other people is an important aspect of 
human intelligence. It is not only important in social 
interactions, e.g. a person who never reveals one’s 
intentions and thoughts will be most probably 

regarded as a “strange fellow”, but it is also crucial 
in an educational context, where students aim to 
comprehend the reasoning of their teachers. 
Furthermore, the explanation of one’s decisions is 
often a prerequisite for establishing a trust 
relationship between people, e.g. when a medical 
doctor explains the therapy decision to his patient. 
Although these social aspects may be of less 
importance for technical AI systems, there are many 
arguments in favor of explainability in artificial 
intelligence. Here are the most important ones: 

• Verification of the system: As mentioned
before, in many applications one must not trust a
black-box system by default. For instance, in
healthcare the use of models which can be
interpreted and verified by medical experts is an
absolute necessity. The authors of [7] show an
example from this domain, where an AI system
which was trained to predict the pneumonia risk
of a person arrives at totally wrong conclusions.
The application of this model in a black-box
manner would not reduce but rather increase the
number of pneumonia-related deaths. In short,
the model learns that asthmatic patients with
heart problems have a much lower risk of dying
of pneumonia than healthy persons. A medical
doctor would immediately recognize that this
cannot be true as asthma and heart problems are
factors which negatively affect the prognosis for
recovery. However, the AI model does not know
anything about asthma or pneumonia, it just
infers from data. In this example, the data was
systematically biased, because in contrast to
healthy persons the majority of asthma and heart
patients were under strict medical supervision.
Because of that supervision and the increased
sensitivity of these patients, this group has a
significant lower risk of dying of pneumonia.
However, this correlation does not have causal
character and therefore should not be taken as a
basis for the decision on pneumonia therapy.

• Improvement of the system: The first step
towards improving an AI system is to understand
its weaknesses. Obviously, it is more difficult to
perform such weakness analysis on black-box
models than on models which are interpretable.
Also detecting biases in the model or the dataset
(as in the pneumonia example) is easier if one
understands what the model is doing and why it
arrives at its predictions. Furthermore, model
interpretability can be helpful when comparing
different models or architectures. For instance,
the authors of [20, 2, 3] observed that models
may have the same classification performance,
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but largely differ in terms of what features they 
use as the basis for their decisions. These works 
demonstrate that the identification of the most 
“appropriate” model requires explainability. 
One can even claim that the better we understand 
what our models are doing (and why they 
sometimes fail), the easier it becomes to improve 
them. 

• Learning from the system: Because today’s AI
systems are trained with millions of examples,
they may observe patterns in the data which are
not accessible to humans, who are only capable
of learning with a limited number of examples.
When using explainable AI systems, we can try
to extract this distilled knowledge from the AI
system in order to acquire new insights. One
example of such knowledge transfer from AI
system to human was mentioned by Fan Hui in
the quote above. The AI system identifies new
strategies to play Go, which certainly now have
also been adapted by professional human players.
Another domain where information extraction
from the model can be crucial are the sciences.
To put it simply, physicists, chemists and
biologists are interested in identifying the hidden
laws of nature rather than just predicting a
quantity with black-box models. Thus, only
models which are explainable are useful in this
domain (c.f., [37, 32]).

• Compliance to legislation: AI systems are
affecting more and more areas of our daily life.
Along with this related legal aspects such as the
assignment of responsibility when the systems
make a wrong decision, have also recently
received increased attention. Since it may be
impossible to find satisfactory answers for these

legal questions when relying on black-box 
models, future AI systems will necessarily 
have to become more explainable. Another 
example where regulations may become a 
driving force for more explainability in 
artificial intelligence are individual rights. 
People who are immediately affected by 
decisions of an AI system (e.g. those who are 
rejected for loans by the bank) may want to 
know why the systems have decided in this 
way. Only explainable AI systems will provide 
this information. These concerns brought the 
European Union to adapt new regulations 
which implement a “right to explanation” 
whereby a user can ask for an explanation of an 
algorithmic decision that was made about her or 
him [13]. 

These examples demonstrate that explainability is 
not only of important and topical academic interest, 
but it will play a pivotal role in future AI systems. 

3. METHODS FOR VISUALIZING,
INTERPRETING AND EXPLAINING 
DEEP LEARNING MODELS

This clause introduces two popular techniques 
for explaining predictions of deep learning 
models. The process of explanation is summarized 
in Fig. 1. First, the system correctly classifies the 
input image as “rooster”. Then, an explanation 
method is applied to explain the prediction in terms 
of input variables. The result of this explanation 
process is a heatmap visualizing the 
importance of each pixel for the prediction. In 
this example the rooster’s red comb and wattle are 
the basis for the AI system’s decision.
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Fig. 1. Explaining predictions of an AI system. The input image is correctly classified as “rooster”. In order to understand 
why the system has arrived at this decision, explanation methods such as SA or LRP are applied. The result of this 

explanation is an image, the heatmap, which visualizes the importance of each pixel for the prediction. In this example the 
rooster’s red comb and wattle are the basis for the AI system’s decision. With the heatmap one can verify that the AI 

system works as intended 

3.1. Sensitivity analysis 

The first method is known as sensitivity analysis (SA) 
[6, 35] and explains a prediction based on the 
model’s locally evaluated gradient (partial 
derivative). Mathematically, sensitivity analysis 
quantifies the importance of each input variable i (e.g. 
image pixel) as 

. 

This measure assumes that the most relevant input 
features are those to which the output is most 
sensitive. In contrast to the approach presented in the 
next subclause, sensitivity analysis does not explain 
the function value f ( x) itself, but rather a variation 
of it. The following example illustrates why 
measuring the sensitivity of the function may be 
suboptimal for explaining predictions of AI systems. 
A heatmap computed with sensitivity analysis 
indicates which pixels need to be changed to make 
the image look (from the AI system’s perspective) 
more/less like the predicted class. For instance, in the 
example shown in Fig. 1 these pixels would be the 

yellow flowers which occlude part of the rooster. 
Changing these pixels in a specific way would 
reconstruct the occluded parts of the rooster, which 
most probably would also increase the classification 
score, because more of the rooster would be visible 
in the image. 
Note that such a heatmap would not indicate which 
pixels are actually pivotal for the prediction 
“rooster”. The presence of yellow flowers is 
certainly not indicative of the presence of a rooster 
in the image. Because of this property SA does not 
perform well in the quantitative evaluation 
experiments presented in clause 5. More discussion 
on the drawbacks of sensitivity analysis can be found 
in [27]. 

3.2. Layer-wise relevance propogation 

In the following we provide a general framework for 
decomposing predictions of modern AI systems, e.g. 
feed-forward neural networks and bag-of-words 
models [5], long-short term memory (LSTM) 
networks [4] and Fisher Vector classifiers [20], in 
terms of input variables. In contrast to sensitivity 
analysis, this method explains predictions relative to 
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the state of maximum uncertainty, i.e. it identifies 
pixels which are pivotal for the prediction “rooster”. 
Recent work [26] also shows close relations to 
Taylor decomposition, which is a general function 
analysis tool in mathematics. 
A recent technique called layer-wise relevance 
propagation (LRP) [5] explains the classifier’s 
decisions by decomposition. Mathematically, it 
redistributes the prediction f (x) backwards using 
local redistribution rules until it assigns a relevance 
score Ri to each input variable (e.g. image pixel). The 
key property of this redistribution process is referred 
to as relevance conservation and can be summarized 
as  

This property says that at every step of the 
redistribution process (e.g. at every layer of a deep 
neural network), the total amount of relevance i.e. the 
prediction f (x) is conserved. No relevance 
is artificially added or removed during 
redistribution. The relevance score Ri of each 
input variable determines how much this variable 
has contributed to the prediction. Thus, in 
contrast to sensitivity analysis, LRP truly 
decomposes the function value  f (x).
In the following we describe the LRP redistribution 
process for feed-forward neural networks; 
redistribution procedures have also been proposed 
for other popular models [5, 4, 20]. Let xj be the 
neuron activations at layer l, Rk be the relevance 
scores associated to the neurons at layer l + 1 and wjk 
be the weight connecting neuron j to neuron k. The 
simple LRP rule redistributes relevance from layer 
l + 1 to layer l in the following way:

where a small stabilization term 𝜖𝜖 is added to prevent 
division by zero. Intuitively, this rule redistributes 
relevance proportionally from layer l + 1 to each 
neuron in layer l based on two criteria, namely (i) the 
neuron activation 𝓍𝓍 j, i.e. more activated neurons 
receive a larger share of relevance, and (ii) the 
strength of the connection wjk, i.e. more relevance 
flows through more prominent connections. Note 
that relevance conservation holds for 𝜖𝜖 = 0. 

The “alpha-beta” rule is an alternative redistribution 
rule introduced in [5]: 

where ()+ and ()− denote the positive and negative 
parts, respectively. The conservation of relevance is 
enforced by an additional constraint α − β = 1. For 
the special case α = 1, the authors of [26] showed that 
this redistribution rule coincides with a “deep Taylor 
decomposition” of the neural network function when 
the neural network is composed of ReLU neurons. 

3.3. Software 

The LRP toolbox [21] provides a python and matlab 
implementation of the method, as well as an 
integration into popular frameworks such as Caffe 
and TensorFlow. With this toolbox one can directly 
apply LRP to other people’s models. The toolbox 
code, online demonstrators and further information 
can be found on www.explain-ai.org. 

4. EVALUATING THE QUALITY OF
EXPLANATIONS

In order to compare heatmaps produced by different 
explanation methods, e.g. SA and LRP, one needs an 
objective measure of the quality of explanations. The 
authors of [31] proposed such a quality measure 
based on perturbation analysis. The method is based 
on the following three ideas: 

• The perturbation of input variables which are
highly important for the prediction leads to a
steeper decline of the prediction score than the
perturbation of input dimensions which are of
lesser importance.

• Explanation methods such as SA and LRP
provide a score for every input variable. Thus,
the input variables can be sorted according to
this relevance score.

• One can iteratively perturb input variables
(starting from the most relevant ones) and track
the prediction score after every perturbation step.
The average decline of the prediction score (or
the decline of the prediction accuracy) can be
used as an objective measure of explanation
quality, because a large decline indicates that the
explanation method was successful in
identifying the truly relevant input variables.

In the following evaluation we use 
model-independent perturbations (e.g. replacing the 
input values by random sample from uniform 
distribution), in order to avoid biases. 
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5. EXPERIMENTAL EVALUATION

This clause evaluates SA and LRP on three different 
problems, namely the annotation of images, the 
classification of text documents and the recognition 
of human actions in videos. 

5.1. Image classification 

In the first experiment we use the GoogleNet model 
[38], a state-of-the art deep neural network, to 
classify general objects from the ILSVRC2012 [9] 
dataset. 
Figure 2 (A) shows two images from this dataset, 
which have been correctly classified as “volcano” 
and “coffee cup”, respectively. The heatmaps 
visualize the explanations obtained with SA and LRP. 
The LRP heatmap of the coffee cup image shows that 
the model has identified the ellipsoidal shape of the 
cup to be a relevant feature for this image category. 
In the other example, the particular shape of the 
mountain is regarded as evidence for the presence of 
a volcano in the image. The SA heatmaps are much 
noisier than the ones computed with LRP and large 
values Ri are assigned to regions consisting of pure 
background, e.g. the sky, although these pixels are 
not really indicative for image category “volcano”. 
In contrast to LRP, SA does not indicate how much 
every pixel contributes to the prediction, but it rather 
measures the sensitivity of the classifier to changes 
in the input. Therefore, LRP produces subjectively 
better explanations of the model’s predictions than 
SA. 
The lower part of Fig. 2 (A) displays the results of 
the perturbation analysis introduced in clause 4. The 
y axis shows the relative decrease of the prediction 
score average over the first 5040 images of the 
ILSVRC2012 dataset, i.e. a value of 0.8 means that 
the original scores decreased on average by 20%. At 
every perturbation step a 9x9 patch of the image 
(selected according to SA or LRP scores) is replaced 
by random values sampled from a uniform 
distribution. Since the prediction score decrease is 
much faster when perturbing the images using LRP 
heatmaps than when using SA heatmaps, LRP also 
objectively provides better explanations than SA. 
More discussion on this image classification 
experiment can be found in [31]. 

2 http://qwone.com/~jason/20Newsgroups 

5.2. Text document classification 

In this experiment, a word-embedding based 
convolutional neural network was trained to classify 
text documents from the 20Newsgroup dataset2.  
Fig. 2 (B) shows SA and LRP heatmaps (e.g. a 
relevance score Ri is assigned to every word) 
overlaid on top of a document, which was classified 
as topic “sci.med”, i.e. the text is assumed to be about 
a medical topic. Both explanation methods, SA and 
LRP, indicate that words such as “sickness”, “body” 
or “discomfort” are the basis for this classification 
decision. In contrast to sensitivity analysis, LRP 
distinguishes between positive (red) and negative 
(blue) words, i.e. words which support the 
classification decision “sci.med” and words which 
are in contradiction, i.e. speak for another category 
(e.g.“sci.space”). Obviously, words such as “ride”, 
“astronaut” and “Shuttle” strongly speak for the 
topic space, but not necessarily for the topic 
medicine. With the LRP heatmap, we can see that 
although the classifier decides for the correct 
“sci.med” class, there is evidence in the text which 
contradicts this decision. The SA method does not 
distinguish between positive and negative evidence. 
The lower part of the figure shows the result of the 
quantitative evaluation. The y axis displays the 
relative decrease of the prediction accuracy over 
4154 documents of the 20Newsgroup dataset. At 
every perturbation step, the most important words 
(according to SA or LRP score) are deleted by setting 
the corresponding input values to 0. Also this result 
confirms quantitatively that LRP provides more 
informative heatmaps than SA, because these 
heatmaps lead to a larger decrease in classification 
accuracy compared to SA heatmaps. 
More discussion on this text document classification 
experiment can be found in [3]. 

5.3. Human action recognition in videos 

The last example demonstrates the explanation of a 
Fisher Vector/SVM classifier [16], which was 
trained for predicting human actions from 
compressed videos. In order to reduce 
computational costs, the classifier was trained on 
block-wise motion vectors (not individual pixels). 
The evaluation is performed on the HMDB51 
dataset [18]. 
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Fig. 2 (C) shows LRP heatmaps overlaid onto five 
exemplar frames of a video sample. The video was 
correctly classified as showing the action “sit-up”. 
One can see that the model mainly focuses on the 
blocks surrounding the upper body of the person. 
This makes perfect sense, as this part of the video 
frame shows motion which is indicative of the action 
“sit-up”, namely upward and downward movements 
of the body. 
The curve at the bottom of Fig. 2 (C) displays the 
distribution of relevance over (four consecutive) 

frames. One can see that the relevance scores are 
larger for frames in which the person is performing 
an upwards and downwards movement. Thus, LRP 
heatmaps not only visualize the relevant locations of 
the action within a video frame (i.e. where the 
relevant action happens), but they also identify the 
most relevant time points within a video sequence 
(i.e. when the relevant action happens). 
More discussion on this experiment can be found in 
[36]. 

Fig. 2. Explaining predictions of AI systems. (A) shows the application of explainable methods to image classification. The 
SA heatmaps are noisy and difficult to interpret, whereas LRP heatmaps match human intuition. (B) shows the application 
of explainable methods to text document classification. The SA and LRP heatmaps identify words such as “discomfort”, 

“body” and “sickness” as the relevant ones for explaining the prediction “sci.med”. In contrast to sensitivity analysis, LRP 
distinguishes between positive (red) and negative (blue) relevances. (C) shows explanations for a human action recognition 
classifier based on motion vector features. The LRP heatmaps of a video which was classified as “sit-up” show increased 

relevance on frames in which the person is performing an upwards and downwards movement 

6. CONCLUSION

This paper approached the problem of explainability 
in artificial intelligence. It was discussed why black-
box models are not acceptable for certain 
applications, e.g. in the medical domain where 
wrong decisions of the system can be very harmful. 
Furthermore, explainability was presented as a 
prerequisite for solving legal questions which are 
arising with the increased usage of AI systems, e.g. 

how to assign responsibility in case of system failure. 
Since the “right to explanation” has become part of 
European law, it can be expected that it will also 
greatly foster explainability in AI systems. 
Besides being a gateway between AI and society, 
explainability is also a powerful tool for detecting 
flaws in the model and biases in the data, for 
verifying predictions, for improving models, and 
finally for gaining new insights into the problem at 
hand (e.g. in the sciences). 
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In future work we will investigate the theoretical 
foundations of explainability, in particular the 
connection between post-hoc explainability, i.e. a 
trained model is given and the goal is to explain its 
predictions, and explainability which is incorporated 
directly into the structure of the model. Furthermore, 
we will study new ways to better understand the 
learned representation, especially the relation 
between generalizability, compactness and 
explainability. Finally, we will apply explaining 
methods such as LRP to new domains, e.g. 
communications, and search for applications of these 
methods beyond the ones described in this paper. 
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