

Symposium on The Future Networked Car

(Geneva, Switzerland, 5 March 2015)

Security issues related to the future Networked Car

Koji Nakao Distinguished Researcher, Network Security Research Institute, NICT Information Security Fellow, KDDI

Agenda

- Background
- Framework of ITS security for standards
- On going work for secure software remote update (ITU-T X.itssec-1 (draft))
- Utilization of light-weight crypto
 V2V Communication Verification Project in Japan

Increase in Automotive Electronics

Connected Vehicles

- Internet connection (LTE, 3G, Wi-Fi, Bluetooth ...)
 - via customer's smartphone, SIM embedded in the vehicle, etc.
- Autonomous car

 Control engines and brakes based on the info from roadside infrastructure as well as car-mounted sensors, cameras, and radars

¹ Average of 1.5 GB/month/vehicle, 1 Petabyte = 1,048,576 GB

The Connected Car

http://johndayautomotivelectronics.com/top-five-technologies-enabling-the-connected-car/

More Attack Surfaces!

http://gigaom.com/2013/08/06/ciscos-remedy-for-connected-car-security-treat-the-car-like-an-enterprise/

Framework of ITS standards (not authorized in ITU-T)

Architecture of a series of standards (General issues)

Reference Architecture/Model

ITS Ref. Model

Terminologies

Common Terms for ITS

Service Models (def) and Requirements

V2V, V2I, V2N

Service Requirements

Service/Protocol Specifications

e.g. Software Remote Update

Mechanisms and Algorithms

e.g. Encryption, Message Processing

Architecture of a series of standards (Security issues)

Reference Architecture/Model

ITS Ref. Model

Terminologies

Common Terms for ITS

Service Models (def) and Requirements

Security Guideline

Security Requirements

Service/Protocol Specifications

e.g. Secure Software Remote Update (X.itssec-1)

Mechanisms and Algorithms

e.g. Encryption, Mac, Authentication..

On going work for software remote update (ITU-T X.itssec-1 (draft) by SG 17)

Works related to Remote Update in other SDOs

ISO TC204 24102-2

- ITS TC204 24102 series focuses on ITS station management
- Part 2 (24102-2) discusses about remote maintenance of ITS-SCU (station communication unit)
- It does not include remote maintenance of devices on vehicle
- Provided by ETSI TC ITS below

ETSI TC ITS

- Provides 20 standards regarding ITS that include ITS infrastructure, communication protocol, etc.,
- Collaborating with EVITA, PRESERVE for a structured standardization
 - EVITA: an FP7 project to develop security mechanisms for on-board devices
 - PRESERVE: an incoming project of EVITA which aims to develop and experiment an HSM based V2X communication technology
- SG17 needs to survey activities in ETSI TC ITS regarding standardization of secure software update

Introduction of draft Rec. X.itssec-1 "Scope"

Example: data flow of remote update

Requirements for the secure software update

- Functions requirements to be provided
 - Remote diagnosis of software modules of on-board devices
 - Digest based software verification at center
 - Secure delivery and application of update modules
 - Log audit at center
 - → Apply digital signature or MAC mechanism using HSM

Limitations inherent to ITS environment

- Characteristics of ITS communication environment
 - High latency, low bandwidth, frequent disconnection, etc.,
- Non-continuous operation of vehicles
 - disconnections due to frequent stop and start of engines
 - a long durations with no connection (e.g., long summer vacation)
- Low computational power of ECU and HSM

Security Considerations for Software Remote Update

Structure of the Recommendation(draft)

6. Basic model of remote software update

- 1. Definition of components for secure software update in the ITS environment
 - 1. ECU
 - 2. Communication head unit
 - 3. Center server
- 2. Basic mechanism
- 7. Threats and Risk Analysis
- 8. Functional requirements for the secure software update
 - 1. Remote diagnosis of software modules
 - 2. Digest based software verification
 - 3. Secure delivery and application of update modules
 - 4. Log auditing
- 9. Model and procedure of secure software update
 - 1. System model
 - 2. Data flow of remote software update
- 10. Functional specifications for components on the ITS environment
 - 1. In-car communication devices
 - 2. Communication head unit
 - 3. Center server
- 11. Practical use cases

Conclusions and Recommendations

- Introduced Secure Remote Update ;
- It is under development in ITU-T SG 17 as a Recommendation X.itssec-1;
- The Recommendation should be a neutral content without introducing some specific methods;
- Collaboration with automotive industry is necessary including with EU and US
 The goal of the Recommendation should be
 - a practical reference/guide for implementing secure remote update for software in the vehicle.

Utilization of light-weight crypto

Much data to be protected(1)

Controller Area Network (CAN) Data

1 Adaptive Cruise Control 2 Electronic Brake System MK60E **3 Sensor Cluster** 4 Gateway Data Transmitter 5 Force Feedback Accelerator Pedal 6 Door Control Unit 12 7 Sunroof 6 Control Unit 12 6 8 13 8 Reversible Seatbelt Pretensioner 9 Seat Control Unit 10 Brakes 11 Closing Velocity Sensor 12 Side Satellites 13 Upfront Sensor 14 Airbag Control Unit

Much data to be protected(2)

V2X Communication Data

http://telematicswire.net/connected-cars-and-smart-homes-coherence-of-a-convergence-platform/

Lightweight Cryptography

- Cryptography tailored for implementation in constrained environments" [ISO/IEC 29192-1]
 - Constraints: chip area, energy consumption, power, memory, communication bandwidth, execution time, etc.
 - Applications: RFID tags, sensors, healthcare/medical devices, low-energy applications, low-latency applications, ...
 - Suitable for Internet of Things!

Lightweight Cryptography

R&D

- EU ECRYPT-I (2004-2007), ECRYPT-II (2008-2013)
 - European Network of Excellence for Cryptology funded within ICT Programme of the European Commission's FP6, FP7
- Japan CRYPTREC (2013-)
- Standardization
 - ISO/IEC 29192
 - Lightweight Cryptography, in ISO/IEC JTC SC27 WG2 since 2009

Why Lightweight Cryptography for Vehicles? (1)

- A modern vehicle contains 50 to 100 or more electronic control units (ECUs).
 - collection of embedded <u>constrained</u> <u>devices</u>
- CAN bus data field is (only) 32 bits.

http://www.digikey.jp/ja/articles/techzone/2014/jul/what-engineers-need-to-know-when-selecting-anautomotive-qualified-mcu-for-vehicle-applications

Why Lightweight Cryptography for Vehicles? (2)

	AES	Lightweight block ciphers		
Properties				
Block Size	128 bits	64 bits		
Key Size	128/192/256 bits	80-128 bits		
Key Schedule		Light (Simple)		
S-box	8 x 8	4 x 4		
Hardware Implementation				
Gate Size (ASIC)	3-10 Kgate	< 3 Kgate		
latency		< 20ns within 10Kgates		
Software Implementation (on microcontrollers)				
ROM (Enc+Dec)	1KB	< 200B		

Why Lightweight Cryptography for Vehicles? (3)

Suzuki, Sugawara, Saeki, "On Hardware Implementation of Lightweight /Low-Latency Cryptography", SCIS2014

Low Latency

- Real-time response is crucial in Advanced Driver Assistance Systems (ADAS).
- AES can't achieve encryption in dozens of nano-seconds within dozens of kgates.

Chip Area [Kgate]

Latency [ns]

Conclusions and Recommendations

- Introduced lightweight cryptography
- Suitable for constrained devices, the connected cars and ITS security.
- Some lightweight algorithms are mature and standardized in ISO/IEC.
- It's high time to standardize practical standards for connected cars and ITS security in ITU-T.
- Collaboration with automotive industry is necessary.

ICT for Next Generation ITS —MIC ITS Project Result Presentation—

V2V Communication Verification Project

<Subcontracted investigation of communication technologies

toward the establishment of next-generation ITS>

Toyota Tsusho Corporation

Objective of V2V communication

V2V communication is used to help maintain a smooth traffic flow by transmitting information about an approaching emergency vehicle to other vehicles in the neighborhood

V2V communication is

used to prevent corner-tocorner collisions at intersections with poor visibility

V2X communication is

used to prevent accidents caused by pedestrians (persons) dashing out in front of vehicles (the next step)

Identified services expected to be commercialized in early stage

Collision prevention support

in the vicinity

Identified services expected to be commercialized in early stage.

Security Evaluation(1)

[Security evaluation scope]

Phase	St	artup phase	Popularization phase	Expansion ph	nase
Trends in safe driving assistand systems	e systen	fe driving assistance ns based on V2V mmunication	Start of safe driving assistance systems based on V2I communication An increase in the number of in-vehicle systems could potentially encourage more disruptions or attempts to gain unauthorized access	Start of safe driving as systems based on communication	V2X
Security items to be considere in each phase	V2V co d Securit	y method for mmunication y key operation ement method	 Security method for V2I communication Framework for maintaining security Security update method Abnormality detection method 	 Security method for communication 	r V2X
 700MHz band safe driving assistance systems 		irement check Test 1 tion management method		Overall Verification	
		ssuance Test 2	Security key	Over	

Security Evaluation(2)

[Test 1] Security method for V2V communication

[Test 2] Security operation management method

*PKI: Public Key Infrastructure

This process checks whether an in-vehicle system can send messages without any problem while also receiving messages from other in-vehicle systems in a simulated environment in which many vehicles are present.

Evaluated operation management methods and carried out verification that assumed an actual operation.

Overall Verification – Test Description

Test course (simulated street at JARI)

Satellite photo: ©2015 Google

Public road (YRP: Yokosuka City)

Satellite photo: ©2015 Google

Overall Verification- Test Result

[Security functions verification]

Human Machine Interface (HMI) example Provided by Pioneer Corp.

Map:Copyright(C) INCREMENT P CORP.

(Left) Identified as an emergency vehicle (Right) Fake emergency vehicle, which is originating the message that imitate an emergency vehicle, is identified as a general vehicle by the security functions.

- Realized V2V communication by the in-vehicle system that implements the security functions.
- Identified the emergency vehicle by the security functions.

Examination of V2P Communication Systems (near future Targets)

Accident example collection and cause analysis

	Who: Seniors (65 years or older), children (12 years or younger),
	and bicyclists
Priority	Where: Intersections on residential streets and single-lane roads
targets	with poor visibility
	How: Crossing outside crosswalks (during right/left turn in the case
	of bicyclists)

Summary

- Standardization of Recommendation X.itssec-1 (Secure Remote Update)
 - Need to collaborate with SDOs (ISO: TC204, ETSI: ETSI TC ITS Working Group Security (WG5)) and EVITA, PRESERVE. TCG...
 - This Recommendation should be a neutral content without introducing some specific methods for providing a practical reference/guide for implementing secure remote update for software in the vehicle.

Light-Weight Encryption for ITS

- Light-Weight is suitable for constrained devices, the connected cars and ITS security.
- It's high time to standardize practical standards for connected cars and ITS security in ITU-T.
- At the next SG17 meeting in April 2015, framework of standards for ITS will be discussed in connection with the work in SG 16.