Hybrid Photonic Integration for Quantum Technologies

From optical benches to integrated circuits

Moritz Kleinert

Fraunhofer Heinrich Hertz Institute Photonic Components Department

Photonic Integration

Monolithic and hybrid approaches

Monolithic Integration

Waveguides and actives on same die \rightarrow Semiconductor material system

- + Optical sub-assembly = fabricated chip
- Limited by properties of material

Hybrid Integration

Waveguides and actives seperate dies

- → actives: semiconductor
- \rightarrow passives: Silica, Si₃N₄, polymer
- \rightarrow NLO: ppLN, ppKTP, ...
- Additional assembly necessary
- + Combination of optimal components and novel functionalities

Photonic Integration

Monolithic and hybrid approaches

Hybrid Photonic Integration at HHI

for quantum communications

Slots & Thin Film Elements

Efficient on-chip filtering

Thin-film elements are based on dielectric layer stacks

- Various efficient filter characteristics
 → wavelength, polarization etc.
- Small footprint
- Temperature-insensitive

Slots & Thin Film Elements

Example: Efficient polarization splitter

- Footprint: some mm²,
- Total insertion loss: <0.7 dB (fiber-chip-fiber)</p>

Slots & Thin Film Elements Example: Pump suppression filter

- Pass: C band / stop: around 785 nm
- 68 dB pump suppression on chip

HHI

Micro-Optical Bench

On-chip free-space sections

Beam collimation with GRIN lenses in on-chip U groove

Free-space sections with lengths up to 10 mm \rightarrow insertion of non-linear + non-reciprocal crystals

Micro-Optical Bench

Example: Integrated optical free-space isolator

<1 dB @1550 nm // > 28 dB isolation over 100 nm bandwidth

Micro-Optical Bench Example: Non-linear optics with ppLN

Higher harmonic generation 1550 nm \rightarrow 775 nm + 515 nm + 387 nm

Hybrid Photonic Integration at HHI

for quantum communications

Hybrid PIC – PolyBoard

Hybrid Photonic Integration

DV-QKD transmitter for polarization encoding

- Pulse sources
- **Polarization handling**
- Attenuation
- **Optical isolation**

GEEÖRDERT VOM

für Bildung und Forschung

OUNE

Bundesministerium

Moritz Kleinert

Hybrid Photonic Integration

DV-QKD transmitter for polarization encoding

- Pulse sources → Tunable laser
- Polarization handling

Attenuation

Optical isolation

GEFÖRDERT VOM

für Bildung und Forschung

Bundesministerium

HHI

Bundesministerium

für Bildung und Forschung

Hybrid Photonic Integration

DV-QKD transmitter for polarization encoding

- Pulse sources \rightarrow Tunable laser
- Polarization handling \rightarrow Thin-film filters
- Attenuation \rightarrow Thermo-optic VOA
- **Optical** isolation

🗾 Fraunhofer

GEEGENERT VON

für Bildung und Forschung

QUNE

Bundesministerium

Hybrid Photonic Integration

Time-bin entanglement source

- Photon pair generation \rightarrow Bragg reflection waveguide
- Polarization handling \rightarrow PBS thin film filter
- Pump suppression
- Delay line interferometer

Fraunhofer HHI

Time-bin entanglement source

- Photon pair generation \rightarrow Bragg reflection WG
- Polarization handling \rightarrow PBS thin film filter
- Pump suppression \rightarrow Thin-film filter
- Delay line interferometer \rightarrow Asymmetric MZI

QUANTUM

UNIORN

HHI

PM output fiber

(785nm)

PM output fibe

(1550nm)

Fraunhofer Heinrich-Hertz-Institut, HHI

WE PUT SCIENCE INTO ACTION.

Contact: Dr. Moritz Kleinert moritz.kleinert@hhi.fraunhofer.de +49 30 31002-380 Einsteinufer 37 10587 Berlin

