Integrated Photonic Processors for Quantum Computing

J J Renema

j.j.renema@{quix utwente}.nl

The vision

• Near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

• We want to do near-term quantum computing with photons

Requirements on the processor

- Computing power set by number of optical modes
- Engineering requirements:
 - Fully programmable (i.e. arbitrary all-to-all coupling)
 - Low optical loss (equivalent to decoherence)
 - Interference-preserving

Requirements on the processor

- Computing power set by number of optical modes
- Engineering requirements:
 - Fully programmable (i.e. arbitrary all-to-all coupling)
 - Low optical loss (equivalent to decoherence)
 - Interference-preserving

Taballione et al, Materials for Quantum Technology 1 (3), 035002 (2021)

- Largest low loss photonic interferometer in the world
- Not a hero device!

Taballione et al, Materials for Quantum Technology 1 (3), 035002 (2021)

- 12-mode, low-loss photonic universal processor
- With all peripheral electronics

- 12-mode, low-loss photonic universal processor
- With all peripheral electronics
- Turnkey, swappable between electronics modules

- Wide transparency window (425-3700 nm) compatible with all sources
- Versatile, mature technology

- Wide transparency window (425-3700 nm) compatible with all sources
- Versatile, mature technology

- Very low optical loss (< 0.1 dB / cm)
- Relatively short bend radius (BS ~ few 100 um)
- Low coupling loss (0.5 dB / w tapers)

- Very low optical loss (< 0.1 dB / cm)
- Relatively short bend radius (BS ~ few 100 um)
- Low coupling loss (0.5 dB / w tapers)

This work

0.1

 10^{6}

104

10²

10⁰

0.01

[1]

[46]

⁻unctional complexity C_f

- Very low optical loss (< 0.1 dB / cm)
- Relatively short bend radius (BS ~ few 100 um)

[17]

Si₃N₄

Silica

SOI

• Low coupling loss (0.5 dB / w tapers)

110Bending radius (mm)NB this is 2-3 dB better than what we
reported in December 2020

- 0.5 dB / facet x 2
- 0.1-0.2 dB fiber-fiber coupling into box
- 12 cm propagation @ < 0.1 dB / cm

Low index contrast

High index contrast

LION

INTERNATION

- •Mode profiles from 1 μm to > 10 μm
- Modefield conversion
- Pitch conversion
- •Low loss coupling to almost any external component, including SM fiber, InP and Si (SOI)
- •Typical <1 dB coupling in assembly to SMF-PM fiber

CONFIDENTIAL

IEI (MV/m

22 5

INTERNATIONA

INTERNATIONA

Teaser for the future: 20 x 20

• This is being measured right now

Engaging with QuiX

- Not just processors!
- Also sell complete photonic QC
- Provide custom circuits for quantum applications (QKD, ion traps, photon sources)

Advertisement: open positions

• PhD students (Photonic QIP, Q Auth, Ising)

Postdoc QRNG

|--|

THE FASTEST WAY TO A QUANTUM FUTURE

- Photonics engineers (Senior / Junior / Team Leader)
- Electrical engineers (s / j / tl)
- Quantum optics experts (s / j / tl)

Conclusion

- Largest photonic quantum processor
 - Low loss
 - High fidelity
 - Coherence-preserving
- Taballione et al, Materials for Quantum Technology 1 (3), 035002 (2021)

12

