Photonic Quantum Advantage

Han-Sen Zhong
University of Science and Technology of China In the research group of Prof. Jian-Wei Pan and Prof. Chao-Yang Lu

Near-, intermediate-, and long-term goals of QC

The need for \rightarrow

Qubits quality + quantity + control, simultaneously

"laying
eggs
along
the way"

Motivation:

A computational analogue of Bell experiments

Bell experiments:

Refute EPR's local hidden variable model

Stronger-than-classical correlation

AY 15.1935

PHySICAL REVIEW
OLUME 47
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einsteiv, B. Podol.sky and N. Rosen, Institute for Adranced Study, Princelon, New Jersey (Received March 25, 1935)

In a complete theory there is an element corresponding quantum mechanics is not complete or (2) these two to each element of reality. A sufficient condition for the quantities cannot have simultaneous reality. Consideration reality of a physical quantity is the possibility of predieting it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that
(1) is false then (2) is also false. One is thus led to concluc that the description of reality as given by a wave function is not complete.

Supremacy experiments:

Refute the old Extended Church-Turing thesis

Faster-than-classical computation

$\mathfrak{T h e} \mathbb{E x t e n}$ ded $\mathbb{C h u r c h}-\mathbb{T}$ uring \mathbb{T} hesis ($\mathbb{E} \mathbb{C} \mathbb{C}$)

$\mathfrak{A n y}$ physically $\mathfrak{r e a l i s a b l e ~ s y s t e m ~ c a n ~ b e ~}$ efficiently simulated on a Turing machine

Bernstein, Vazirani, (1993)
Harrow \& Montanaro, Nature 549, 203 (2017)

Google's Sycamore quantum processor

Ivanka Trump @lvank... . Oct 23, 2019 .o. It's official! The US has achieved quantum supremacy!
In a collaboration between the Trump Admin, @Google and UC Santa Barbara, quantum computer Sycamore has completed a calculation in 3 min 20 sec that would take about 10,000 years for a classical comp.

Google's quantum processor "Sycamore" with 53 superconducting qubits Arute et al., Nature 574, 505 (2019)

- IBM \& Alibaba: the 10,000 years can be shortened to few days
- USTC: With sufficient storage, the advantage is sample-size dependent For 10 billion samples, no quantum advantage
- Institute of Theoretical Physics, CAS: simulating using few tens of GPU
"Quantum computational advantage, rather than being a one-shot experimental proof, will be the result of a longterm competition between quantum devices and classical simulation."
-- lan S. Osborne
Science 370(6523), 1428 (2020)

Umesh Vazirani, SFB workshop
16 February 2021

Quantum supremacy is not a one-and-done. It is an important scientific experiment:

1. Exponential growth arguably the most counter-intuitive aspect of quantum mechanics.
2. Testing the limits of physics: high energy, Planck scale, speed of light... New limit in which to test physics: high complexity.

Quantum supremacy experiments have to be refined over time to eliminate loopholes.

This means better guarantees that the underlying computational problem is classically intractable, and verification that the quantum device actually solved the problem

Boson Sampling

The Computational Complexity of Linear Optics*

Scott Aaronson ${ }^{\dagger}$

Alex Arkhipov ${ }^{\ddagger}$
$P(\mathbf{S} \mid \mathbf{T})=\left|\left\langle\mathbf{S} \mid \Psi_{\text {out }}\right\rangle\right|^{2}=\frac{\left|\operatorname{Per}\left(\mathbf{\Lambda}^{(\mathbf{S}, \mathbf{T})}\right)\right|^{2}}{\prod_{j=1}^{M} S_{j}!\prod_{i=1}^{M} T_{i}!}$

Even an approximate or noisy classical simulation of boson sampling would imply a collapse of the polynomial hierarchy.

Where we started on 2013...

(winning millions \$\$\$ lottery)^20

50 -photon rate about $10^{-150} \mathrm{~Hz}$

State-of-the-Art Standard Boson Sampling

With further optimized sources, boson sampling with 30 photons are in progress

Old estimations from 2013 to 2016 on the regime of quantum supremacy were $20-30$ photons

Neville, A. et al. (2017) proposed Metropolised independence sampling and raised the bar to ~ 50 photons!

How to go beyond $50 ?$

Phys. Rev. Lett. 123, 250503 (2019)

Pro: Single quantum emitter
Con: Dipole emission inside high-reflective index material hard for collection

Pro: Direction \& Gaussian profile inherit from the laser: easy for single-mode collection
Con: Probabilistic \& double pair

Conclusion:

It is still difficult to engineer an indistinguishable (>99\% visibility) single-photon source with $>90 \%$ system efficiency,
however,
It is much easier to have an SPDC with >99\% indistinguishability and $>90 \%$ collection efficiency simultaneously - if the Gaussian nature of the PDC is not a problem.

Gaussian boson sampling:

How I stop worrying the multiphoton emission and fall in love with the full states of SPDC

Hamilton, Kruse, Sansoni, Barkhofen, Silberhorn \& Jex, Gaussian Boson Sampling. Phys. Rev. Lett. 119, 170501 (2017). Quesada, Arrazola, \& Killoran, Gaussian boson sampling using threshold detectors. Phys. Rev. A 98, 062322 (2018).

Most previous multiphoton experiments restrict themselves to a small SPDC probability (<0.05) regime to reduce multi-pair emission

Gaussian boson sampling makes full use of the SPDC

It's all about the sum of the probability amplitudes of all indistinguishable paths that can lead to the event

AaronsonArkhipov boson sampling
$1234 \rightarrow 1347$; already 23520 combinations
Output N-photon coincidence

It's all about the sum of the probability amplitudes of

 all indistinguishable paths that can lead to the event

Aaronson-
Arkhipov boson sampling

Output N-photon coincidence count

$$
\begin{aligned}
& \mid \text { squeezed vacuum }\rangle_{\text {input }}=\sum_{k=0}^{\infty} g(\mathrm{k}) \mathrm{e}^{i k \phi}|2 k\rangle \\
& \hline \mathrm{P}_{N}
\end{aligned}=\mid \sum \text { all possible input photon-number combination } \sum \text { all possible paths }\left.\right|^{2} \text {. }
$$

Gaussian boson sampling

Optimal squeezed light source

Kwiat et al. PRL (1995)

Optimal squeezed light source

8-photon entanglement,
Yao et al. Nature Photonics (2012)

10-photon entanglement,
Wang et al. Phys. Rev. Lett. (2016)

Optimal squeezed light source

10-photon entanglement,
Wang et al. Phys. Rev. Lett. (2016)

$3 \mathrm{~nm}-8 \mathrm{~nm}$ filter

12-photon entanglement, Zhong et al. Phys. Rev. Lett. (2018)

30 nm filter

Efficiency: 70\% >>> 87\%

Optimal squeezed light source

High Quality Quantum Photon Source

High Quality Quantum Photon Source

Stimulated PDC:

same laser power, 4 times brighter
squeezed light

High Quality Quantum Photon Source

Stimulated PDC:

same laser power, 4 times brighter squeezed light

Science 370, 1460 (2020); arXiv:2106.15534

1	2	3	4	5	0.94
6	7	8	9	10	0.93
11	12	13	14	15	0.92
16	17	18	19	20	0.91
21	22	23	24	25	0.9

1	2	3	4	5	0.98	∞
6	7	8	9	10	0.97	\sum
11	12	13	14	15	0.96	N
16	17	18	19	20	0.95	©
21	22	23	24	25		כ
					0.94	-

High Quality Quantum Photon Source

Stimulated PDC:

same laser power, 4 times brighter
squeezed light

Scalable Ultra-High Efficiency Interferometer

Scalable Ultra-High Efficiency Interferometer

- State-of-the-art scale: 144×144 input-output modes
- Full-connection
- Random matrix
- Stable phase
- Wave-packet overlap >99.8\%
- Transmission efficiency >98\%

Active phase locking

Jiuzhang 2.0

Science 370, 1460 (2020); PRL 127, 180502 (2021)

Three different regimes:

- Easy regime: can obtain the full output distribution. (2-4 photons)
- Sparse regime: only a small fraction of output combinations can obtain one event, while most output will have zero events. (5-40 photons)
- Intractable regime: when the output click number exceeds ~ 40, the calculation of one matrix function becomes classically too hard. (>40 photons)

System calibration at easy regime

All the raw data are available at

http://quantum.ustc.edu.cn/web/node/951

Unlike Shor's algorithm where its solution can be efficiently of the outcome is strongly conjectured to be intractable for cla

How to validate?

Gathering circumstantial evidence while ruling out possible hy

- Thermal states-would result from excessive photon loss
- Distinguishable-would be caused by mode mismatch
- Uniform, coherent, ... more are welcome!

High order correlation

Spearman's rank order test
Experimental correlation $\left(\times 10^{-3}\right)$
$\mathrm{p}<0.05$ for $\mathrm{k}=19+/-1$

Phase-programmable GBS

We change 30 random input squeezed state phases and obtain 30 statistically different samples, each are validated against mockups.

Science 370, 1460 (2020); arXiv:2106.15534

Next:

- Make the interferometer fully tunable. Looking for applications.
- Any genuine quantum advantage in the existing protocols?

Applications

Fig. 5: Vibronic spectra experiment.

Fig. 6: Graph similarity experiment.

Nature volume 591, pages54-60 (2021)

Xanadu

A computational analogue of Bell experiments

Quantum computation

 advantage experiments:10^{24} times faster than
a supercomputer

"We hope this work will inspire new theoretical efforts to verify large-scale GBS, improve the classical simulation strategies, and challenge the observed quantum computational advantage."

Acknowledgement

