Digital Financial Services Security Webinar

Episode #4:Securing the USSD and STK Infrastructure for Mobile Payments

Mwesigwa Vincent Manager- Information Security, UCC 28th May 2025

Agenda

- Context & Adoption
- Why security matters
- Threat Landscape
- DFS ecosystem
- Common Vulnerabilities
- Best Practices for Operators & DFS Providers
- Summary & Key Takeaways

USSD & STK

Over 90% of transactions in Africa depend on USSD and STK

Services such as account opening, money transfer, bill payments

Popular due to accessibility, real-time response, low cost, no data connection needed

Why Security Matters

Multiple touchpoints create opportunities for cyber attacks

Risks like service disruption, fund diversion, data breaches

Trust in mobile money relies on secure infrastructure

Threat Landscape

Social engineering and phishing via USSD

Unauthorized access to the mobile device/theft.

SIM swap and recycling attacks

Rogue base stations (IMSI catchers)

SS7 protocol abuse and remote SIM toolkit misuse

DFS ecosystem

User

target user for DFS, uses mobile money application on a mobile device to access the DFS ecosystem

MNO

provides communication infrastructure from wireless link through the provider network

DFS Provider

application component, interfaces with payment systems and third-party providers.

Common Vulnerabilities

Weak session validation and timeouts

Unencrypted channels between core systems

SIM vulnerabilities (e.g., SIMjacker, OTA attacks)

Security practices for DFS applications based on USSD and STK

mirror_mod = modifier_ob mirror object to mirro irror_mod.mirror_object Peration = "MIRROR_X": Peration == "MIRROR_X": irror_mod.use_X = True irror_mod.use_X = False operation == "MIRROR_Y irror_mod.use_X = False operation == "MIRROR_Z irror_mod.use_X = False operation == "MIRROR_Z irror_mod.use_Y = True

election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.active "Selected" + str(modific irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob ata.objects[one.name].selected_ob

int("please select exactle

---- OPERATOR CLASSES ----

Mitigation against retrieval of user data

- Enable Encryption between users' devices and base stations
- Use session timeout on the client-side to limit altered requests/responses.
- Deploy USSD PIN masking whenever possible
- Ensure there is an auditable process
- Enable option to opt-out of the USSD or STK channels
- Set transaction limits for customer withdrawals and transfers over the USSD

SIM swap and SIM recycling risks mitigation measures

- Device authentication using the IMEI's
- The user identity verification (pin, finger face etc.
- Real time detection of sim swap and replacement
- IMSI validation gateway
- Securely store SIM data like IMSI

Remote USSD execution mitigation measures

- Disable the ADB interface, and device vendors should not ship products with Android Debug Bridge enabled over a network
- DFS users should be educated on the dangers of connecting to public Wi-Fi and granting permissions to an app on a device
- Avoid using rooted devices for DFS transactions

SIM exploitation using binary OTA mitigation measures

- Monitoring and SMS filtering, SMS should only be allowed from whitelisted sources
- OTA messages with STK coding restricted to only from MNO platform and not from or to other subscribers
- A2P SMS traffic from content providers must be free of any STK commands
- SMS home routing

Summary & Key Takeaways

USSD/STK are essential yet vulnerable channels ITU-T X.1456 provides a robust defense model

7

Secure implementation is achievable with proper tools and collaboration

3

Start with practical steps today to strengthen user trust and security

Q&A

Thank you!