# Deep Learning for Wildfire Danger Forecasting at Different Spatiotemporal Scales

Presenter - Ioannis Prapas





#### **Motivation**

Climate change will aggravate fire danger

increasing the frequency and severity of wildfires

Anticipation of fire danger

- Days in advance (short term)
- Manage resources, dispatch units, monitor forests
- Weeks, months (long-term)
- Lease equipment, manage fuel



Overall weather-driven forest fire danger in the present climate and projected changes under two climate change scenarios



### Challenges

Fires are the result of **complex interactions** between humans, climate, vegetation

Proposed solution

Use **Machine Learning** on historical Earth Observation data

Associate conditions of fire drivers to past **burned areas** 



Fire Drivers. Source: Hantson et al. "The status and challenge of global fire modelling" (2016)

# Short-term Wildfire Danger Forecasting



#### **Current Status**

#### EFFIS (8kmx8km) Fire Weather Index

#### National Danger maps

- Low or regional resolution,
- Based only on meteo or handcrafted rules



# Fire danger maps from Greek Civil Protection



Source: EFFIS fire danger forecast for July 16<sup>th</sup> 2020 https://effis.jrc.ec.europa.eu/about-effis/

#### Data-driven fire danger

#### What is fire danger?

*"Fire danger assesses the conditions that allow a fire to ignite and spread."* from Pettinari, M. Lucrecia, and Emilio Chuvieco. "Fire danger observed from space." (2020)

**Objective** "Associate conditions of fire drivers to large burned areas."

### FireCube - Data Collection and Harmonization

#### **Variables**

**Meteo** (ERA5-Land): Temperature, Wind speed & direction, Precipitation, Relative Humidity (9km) 40 **Satellite** (MODIS): Land Temperature, NDVI/EVI, LAI/FPAR, Evapotranspiration 37 **Soil moisture** (European Drought Observatory) **Topography** (EU-DEM): Elevation, Slope, Aspect Land Cover (Corine) **Population Density** (WorldPop) **Roads Density** (OpenStreetMap) **Burned areas** (EFFIS) Harmonization **Resolution:** 1km x 1km x 1day Spatial Extent: Greece and eastern Mediterranean **Temporal Extent: 2009-2021** 



FireCube: A Daily Datacube for the Modeling and Analysis of Wildfires in Greece (1.0) [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.6475592</u>

### **Experimental Setup**

- From the datacube we extract different types of datasets to feed to different models
  - Tabular dataset
  - Temporal Dataset
  - Spatio-temporal Dataset
- The target is always the same If the cell with burn from a fire that starts the next day and becomes large
- Negative samples are chosen from days with no fires in a large areas

Code: <u>https://github.com/Orion-AI-Lab/wildfire\_forecasting</u>



#### **Geophysical Research Letters**<sup>•</sup>

Research Letter 🖻 Open Access 💿 🛞 😒

Wildfire Danger Prediction and Understanding With Deep Learning

Spyros Kondylatos 🔀 Ioannis Prapas 🕱 Michele Ronco, Ioannis Papoutsis, Gustau Camps-Valls, María Piles, Miguel-Ángel Fernández-Torres, Nuno Carvalhais

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL099368

| -                                  |                             |
|------------------------------------|-----------------------------|
| r xiv > cs > arXiv:2111.02736      | Search ,<br>Hillp (Advances |
| omputer Science > Machine Learning |                             |

#### Deep Learning Methods for Daily Wildfire Danger Forecasting

Ioannis Prapas, Spyros Kondylatos, Ioannis Papoutsis, Gustau Camps-Valls, Michele Ronco, Miguel-Ángel Fernández-Torres, Maria Piles Guillem, Nuno Carvalheis

Withis howcarding out damanous' properties for dealine run encloses and environmental solationality. We approach tably the design products and an environmental environmente environmental environment

Comments: Accepted to the workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response at the 39th Conference on Neural Information Processing

https://arxiv.org/abs/2111.02736

#### **Evaluation**

Models that leverage **temporal** and **spatio-temporal** data are best.

Comparison against the Fire Weather Index (FWI)

- For fires in the test set, we measure the predictive skill of each model and FWI
- Upscale all outputs to FWI's resolution

DL models are **better predictors** of large burned areas than the Fire Weather Index



### Fire Danger maps in summer 2022

- We apply this setting with real-time data in the summer of 2022
- DL models are more biased to extreme values
- Generally higher resolution and precision than fire danger indices



#### Service

- Email service for predictions 2 times/day
- **Prototype web app** since this summer with predictions and all input variables
- In the summer 2022 high fire danger for most large fires (28/35) Greater precision than existing solutions
- Very positive feedback
  from officials







## Subseasonal to Seasonal Wildfire Forecasting



#### **Current Status**

European Forest Fire Information System

Long-term Monthly forecast of temperature and rainfall anomalies

Weather anomalies Sub-seasonal forecast

 Temperature, Rain Anomalies 1-6 weeks

Seasonal Forecast

 Temperature, Rain Anomalies 1-6 months

For wildfire forecasting, other aspects are also important such as the vegetation, memory effects from previous seasons, human activity



#### Rain anomalies

Seasonal forecast



#### Earth is a complex inter-connected system



Source: Statistical physics approaches to the complex Earth system

**Teleconnections** are long-range spatiotemporal connections in the earth system. *"Arctic oscillation anomalies linked to extreme wildfires in Siberia" Kim et al. (2020)* 

**Memory effects** refer to the temporal dynamics of earth system variables. E.g. state of vegetation after previous year sustained drought.

Why Machine Learning?

(a) Non-Linear Interactions: Hard to capture relationships on seasonal and sub-seasonal scales.

(b) Large Scale Datasets

(c) Modern ML methods like Transformers and Graph Neural Networks can leverage and learn from non-local variable interactions

#### SeasFire Datacube



SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth System [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7108392

- **Resolution**: 8days x 0.25° x  $0.25^{\circ}$
- **Extent**: Global, 2001 2020
- **Wildfire drivers** 
  - Meteorology (ERA5)
  - Satellite Observations (MODIS)
  - <u>Vegetation</u>, Surface

  - Temperature Oceanic Indices (NOAA) Population Density (NASA SEDAC), Land Cover (ESA
- Wildfiré variables
  - Burned Areas (GFED, FireCCI, GWIS)
  - Fire Emissions (GFAS)

### Wildfire Forecasting as a Segmentation Task

- Input: 8 fire driver variables at time t. Stacked 128x128 patches
- Target: Presence of burned area at time t+h (h=8, 16, 32, 64 days)
- A separate UNET++ model is trained for each h
- Data split temporally: Training (2001 to 2017) Validation (2018) Testing (2019)

Presented in NeurIPS 2022 Workshop on Tackling Climate Change with AI

https://www.climatechange.ai/p apers/neurips2022/52





#### **Results - Quantitative**

- Area Under the Precision Recall Curve and F1 more fit for imbalanced datasets
- Models' predictive skill is better than mean seasonal cycle
- Burned area patterns can be skillfully predicted 2 months in advance

Table 1: AUPRC, F1-score for the UNET++ model forecasting with different lead times on the test dataset (year 2019). Baseline values for the weekly mean seasonal cycle also reported.

|                            | Lead time (days) | AUPRC | F1-score | AUROC |
|----------------------------|------------------|-------|----------|-------|
| UNET++                     | 8                | 0.550 | 0.507    | 0.976 |
|                            | 16               | 0.547 | 0.489    | 0.975 |
|                            | 32               | 0.543 | 0.473    | 0.973 |
|                            | 64               | 0.526 | 0.424    | 0.971 |
| Weekly Mean Seasonal Cycle | -                | 0.429 | -        | 0.918 |

#### **Results - Qualitative**

Main patterns are captured

- Shift from the southern to the northern African savanna
- Reduction in fire activity in eastern Europe
- Increase in fire activity in Indochina



### Main Takeaways

Machine Learning can increase the skill of wildfire danger maps

#### Short-term versus Long-term

- In the short-term (days), temporal context is mostly enough
- In the long-term (weeks, months), spatial context becomes important

#### Evaluation should be in fire danger terms

- Problem-specific metrics
- Normal versus extreme seasons
- Compare with existing tools

From research to operations

- Understand user's operations
- Data availability is an issue

#### Links

- Code
  - https://github.com/Orion-AI-Lab/wildfire\_forecasting
  - <u>https://github.com/SeasFire</u>
- Data
  - FireCube: A Daily Datacube for the Modeling and Analysis of Wildfires in Greece (1.0) [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.6475592</u>
  - SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth System (0.0.2) [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.7108392</u>
- Publications
  - Prapas, Ioannis, et al. "Deep learning methods for daily wildfire danger forecasting." arXiv preprint arXiv:2111.02736 (2021).
  - Kondylatos, Spyros, et al. "Wildfire danger prediction and understanding with Deep Learning." Geophysical Research Letters 49.17 (2022): e2022GL099368.
  - Prapas, Ioannis, et al. "Deep Learning for Global Wildfire Forecasting." arXiv preprint arXiv:2211.00534 (2022).

# Thank you!

