

Interoperability of IoT and satellite data for Earth observation supporting sustainable development

Session 1: International Research and Innovation Challenges and Opportunities

Erik Andersson ECMWF and European Commission DG-DEFIS Copernicus

ITU - 14 December 2021

Space

Copernicus EU 🛥 Copernicus EU
Copernicus EU
www.copernicus.eu

Earth Observation Satellites ΕU

Sentinel Mission and Status

SENTINEL-1:	2 Sats in
4-40m resolution, 3 day revisit at equator	orbit
SENTINEL-2:	2 Sats in
10-60m resolution, 5 days revisit time	Orbit
SENTINEL-3:	2 Sats in
300-1200m resolution, <2 days revisit	Orbit
SENTINEL-4:	1st Launch
8km resolution, 60 min revisit time	in 2022
SENTINEL-5p:	1 Sat in
7-68km resolution, 1 day revisit	Orbit
SENTINEL-5:	1st Launch
7.5-50km resolution, 1 day revisit	in 2022
SENTINEL-6:	1 Sat in
10 day revisit time	Orbit

Full, free and open data policy Polar-orbiting, all-weather, day-and-night radar imaging

Key Features

Polar-orbiting, multispectral optical, high-res imaging

Optical and altimeter mission monitoring sea and land parameters

Payload for atmosphere chemistry monitoring on MTG-S

Mission to reduce data gaps between Envisat, and S-5

Payload for atmosphere chemistry monitoring on MetOp 2ndGen

Radar altimeter to measure seasurface height globally

COPERNICUS ARCHITECTURE

Copernicus

6 services use Earth Observation data to deliver

Sentinels

OPEN AND FREE DATA POLICY

Contributing missions

In Situ

added-value products

3

COPERNICUS IN BRIEF

- Copernicus, the Earth Observation programme of the European Union:
 - Monitors the Earth, its environment and ecosystems (climate, air quality, greenhouse gases)
 - Responds to EU's strategic goals (e.g. carbon emission targets) and policy objectives (such as the Green Deal)
 - Prepares for crises, security risks and natural or man-made disasters
 - Adopts a full, free and open policy for data and information

AUTHORITATIVE DATA and QUALITY

Copernicus

•

- Copernicus has a reputation of high-quality data and services, enabled by
 - the excellence of the Sentinel sensors
 - algorithm performance and world-class modelling
 - comprehensive calibration and validation of data and products
 - Interoperability of the Sentinel data with other EO missions, while preserving European independence

Copernicus Expansion Missions

6 priority challenges have been identified ...

Emissions vs Climate Change

Agriculture & Urban Mgmt.

Effects Climate Change

Food Security, Soil & Minerals

Sea Ice & Hydrology

Soil, Vegetation & Ground Motion

Global, continuous monitoring of CO2

Copernicus

Data 2002-2010-YCO2 ORSAMIDS/1/A 21-2020-CAMS/NDT1 - Satallitas SCIAMACHY/ENVISAT±COSAT±COSAT±OCO2 - Cradit C2S/CCI/CAMS/I Iniv. Broman/SDON

European Commission

CO2plumes from cities and power plants

European Commission

Copernicus

COPERNICUS CO2 EMISSIONS MONITORING & VERIFICATION SUPPORT CAPACITY

The urban CO2 observation networks

Outline for a comprehensive urban CO₂ observatory for fossil fuel emission detection.

100 x 100 km

70 x 70 km

45 x 45 km

Paris

10 high-precision sites 30 roof-level sensors

Nen

Munich

20 roof-level sensors 100 street-level sensors

- Tall tower or elevated high-precision system (WP 3.1)
- Roof-level sensor network sites (WP 3.2)
 - Street-level sensor network (WP 3.2) ٠

(a) Atmospheric in-situ concentrations

Zurich

20 roof-level sensors

Satellites provide the backbone

Information services require interoperability with ground-based observations because:

- 1. Local data in and around cities, and at power plants
- 2. Attribution to natural and anthropogenic sources
- 3. Real-time data assimilation in atmospheric models
- 4. Calibration and Validation

Rapid availability (hours), globally standardized (WMO), with documented accuracy

Thank you! www.copernicus.eu

www.copernicus.eu

Space