Managing the Risks of IoT in Cities and Communities Through Standards

Abdulhadi AbouAlmal Q6/20 Rapporteur, ITU-T Study Group 20

Growing Challenges in IoT & SCC Domains ...

- Network exposure in IoT & SCC Domains could lead to a greater attack surface
- Compromised IoT devices may expose data, cause disruption of services, damage of systems, or attack infrastructure and devices (e.g. DDoS, MitM, Malware ...etc.)
- International standards are developed to secure IoT devices and networks against malicious actions based on in-depth strategies, architectures, processes and solutions.

Security Risks and Challenges Faced by Cities

Security Impacts

Disruption of essential services

Loss of trust

Disruption of operations

Economic impacts

Public safety

Personal information

Privacy Impacts

Financial/banking information

Health records

Wearable Device

Domotics

Metadata

Importance of International Standards

ITU-T Study Group 20: IoT and Smart Cities and Communities

ITU-T Study Group 20: Internet of Things and Smart Cities and Communities

Q1/20 Interoperability and interworking of IoT and SC&C applications and services

Q2/20 Requirements, capabilities and architectural frameworks across verticals enhanced by emerging digital technologies

Q3/20 IoT and SC&C architectures, protocols and QoS/QoE

 ${\bf Q4/20}$ Data analytics, sharing, processing and management, including big data aspects, of IoT and SC&C

Q5/20 Study of emerging digital technologies, terminology and definitions

Q6/20 Security, privacy, trust and identification for IoT and SC&C

Q7/20 Evaluation and assessment of Smart Sustainable Cities and Communities

Q6/20: Security, Privacy, Trust and Identification for IoT and SC&C

More info: <u>https://www.itu.int/en/ITU-T/studygroups/2017-2020/20/Pages/q6.aspx</u>

murror_mod = modifier_ob. mirror object to mirror mirror_mod.mirror_object peration == "MIRROR_X": irror_mod.use_x = True lrror_mod.use_y = False irror_mod.use_z = False operation == "MIRROR Y" lirror_mod.use_x = False irror_mod.use_y = True irror_mod.use_z = False _operation == "MIRROR_Z" Irror_mod.use_x = False irror_mod.use_y = False irror_mod.use_z = True selection at the end -add ob.select= 1 er ob.select=1 ntext.scene.objects.active "Selected" + str(modifie irror ob.select = 0 bpy.context.selected_ob lata.objects[one.name].se mint("please select exactle OPERATOR CLASSES -----X mirror to the selected ect.mirror_mirror_x" context):
context.active_object is not

Recommendations ITU-T Y.4459 and ITU-T Y.4805

ITU-T Y.4459

 Digital entity architecture framework for Internet of things interoperability

ITU-T Y.4805

 Identifier service requirements for the interoperability of smart city applications

Recommendation ITU-T Y.4806 and ITU-T Y.4807

ITU-T Y.4806

 Security capabilities supporting safety of the Internet of things

<u>ITU-T Y.4807</u>

 Agility by design for telecommunication/I CT systems security used in the Internet of things

Recommendations ITU-T Y.4808 and ITU-T Y.4809

ITU-T Y.4808

 Digital entity architecture framework to combat counterfeiting in Internet of things

ITU-T Y.4809

 Unified IoT Identifiers for intelligent transport systems

Q6/20 Ongoing Work Items

Work items	Subject / Title	
Y.4810 (ex Y.Data.Sec.loT-Dev)	Requirements of data security for the heterogeneous IoT devices	
Y.4811 (ex Y.IoT-CSIADE-fw)	Reference framework of converged service for identification and authentication for IoT devices in decentralized environment	
Y.FW.IC.MDSC	Framework of identification and connectivity of moving devices in smart city	
<u>Y.IoT-Ath-SC</u>	Framework of IoT-devices authentication in smart city	
<u>Y.IoT-IoD-PT</u>	Identity of IoT devices based on secure procedures to enhance trust of IoT systems	
Y.IoT-Smartcity-Risk	Reference framework of cybersecurity risk management of IoT ecosystems on smart cities	
Y.oneM2M.SEC.SOL	oneM2M Security Solutions	
<u>YSTR.Feas-DID-IoT</u>	Feasibility of Decentralised Identifiers (DIDs) in IoT	
YSTR-IADIoT	Intelligent Anomaly Detection System for IoT	

Data-Security

- **Challenges:** IoT devices are exposed to a variety of data security threats that could impact Confidentiality, Integrity, and Availability (e.g. MitM attacks, DDoS attacks, etc.)
- Standard-based solution:
 - Recommendation ITU-T Y.4810 specifies Requirements of data security for the heterogeneous IoT devices including:
 - Modeling scenarios of data security for IoT devices
 - Defining data security threats & requirements for IoT devices under specific scenarios

Identification & Authentication in Decentralized Environments

- **Challenges:** Identification & authentication of IoT devices across different IoT systems can be complicated.
- Standards-based solution:
 - Recommendation ITU-T Y.4811 provides reference framework of converged service for identification and authentication for IoT devices in decentralized environment
 - Leverages IoT services and devices to access capabilities of identification & authentication.
 - Supports interactions between large numbers of IoT devices and services which use different decentralized IoT systems.

IoT Secure Identification Procedures

- **Challenges:** Security procedures to identify and certify IoT devices may be robust enough.
- **Standards-based solution:** WI Y.IoT-IoD-PT investigates methods for IoT device identification to ensure they are unique and robust:
 - Simple IoT devices based on passive tags
 - e.g. utilize IP/MAC addresses.
 - Complex IoT devices based on microcontrollers
 - e.g. utilize digital signatures and certificate authorities.

Decentralized Identifiers in IoT

- Challenges: Using persistent identifiers in IoT networks may pose a privacy risk (e.g. tracking and identifying users).
- Standards-based solution:
 - Decentralized Identifiers (DIDs) are independent of a central issuing identity provider that creates and controls the identifier.
 - WI YSTR.Feas-DID-IoT studies the feasibility of DIDs in IoT environments.

Unified IoT Identifiers for Intelligent Transport Systems (ITS)

• **Challenges:** Autonomous, unmanned and intelligent vehicles are becoming more common, with requirement to safely and efficiently transport goods and humans.

Standard-based solution:

- Standards related to Intelligent transport systems (ITS) enable traffic and transportation services to users & connected vehicles, enabling them to perform more efficient decisions.
- Recommendation ITU-T Y.4809 unifies the field formats for identifiers of road signs and signals and standardizes specific values of such identifiers for every signor signal.

Ceport M.2445-01

Smart City-Risk

- **Challenges:** Smart cities are exposed to many risks which must be identified for risk analysis.
- Standards-based solution: WI Y.IoT-Smartcity-Risk analyses cybersecurity risks presented by IoT ecosystems that affect Smart Cities, including:
 - Characteristics and high-level requirements of the risk management for IoT components;
 - Set of key risk indicators (KRI) for IoT ecosystems in the smart city domain.

Authentication in Smart Cities

- Challenges: Traditional authentication processes for IoT devices using WEP, WPA, WPA2 protocols could be vulnerable.
- Web based authentication could be more secure, but may not be practical for "simple" IoT devices (e.g. smart watches), which usually do not support HTTP.
- Standards-based solution: WI Y.IoT-Ath-SC is developing a secure methodology for authenticating IoT devices without using Web authentication.

Moving Devices in Smart Cities

- **Challenges:** Existing methods of identifying and verifying MDSC & IoT systems are not sufficient for long distances.
- Standards-based solution: WI Y.FW.IC.MDSC is defining a methodology for MDSC identification using wireless technologies, in particular mobile infrastructure supporting long distance MDSC connectivity and long battery life (e.g. NB-IoT and LTE-eMTC).

Intelligent Anomaly Detection

- **Challenges:** IoT devices exposed to the Web are vulnerable to global intrusion efforts considering impact on Resource-constrained (battery, processing, etc.).
- Standards-based solution: WI YSTR-IADIoT defines an Anomaly Detection System (ADS), which helps prevent and mitigate cybersecurity attacks in IoT devices and systems through the detection of abnormal activities.

Conclusion

Accelerated digital transformation has led to increased risk of cyber security attacks. City and Community leaders must be prepared to respond and prioritize security, privacy and trust. Standards play a critical role in helping cities and communities enhance security capabilities.

Thank you!

Questions? Interested in learning more? Let us know!

	-	
	m	
1.1		

u4ssc@itu.int

Website

ITU-T, Smart Sustainable Cities

