
The Dream of a Common Language

international standards for the quantum economy

Barbara Goldstein

Associate Director, Physical Measurement Laboratory, NIST Program Manager, NIST on a Chip

> bgoldstein@nist.gov 240-994-0452

Harmonization of Terminology in Standards for Quantum Technology

June 23, 2021

Standards – what are they & why do they matter

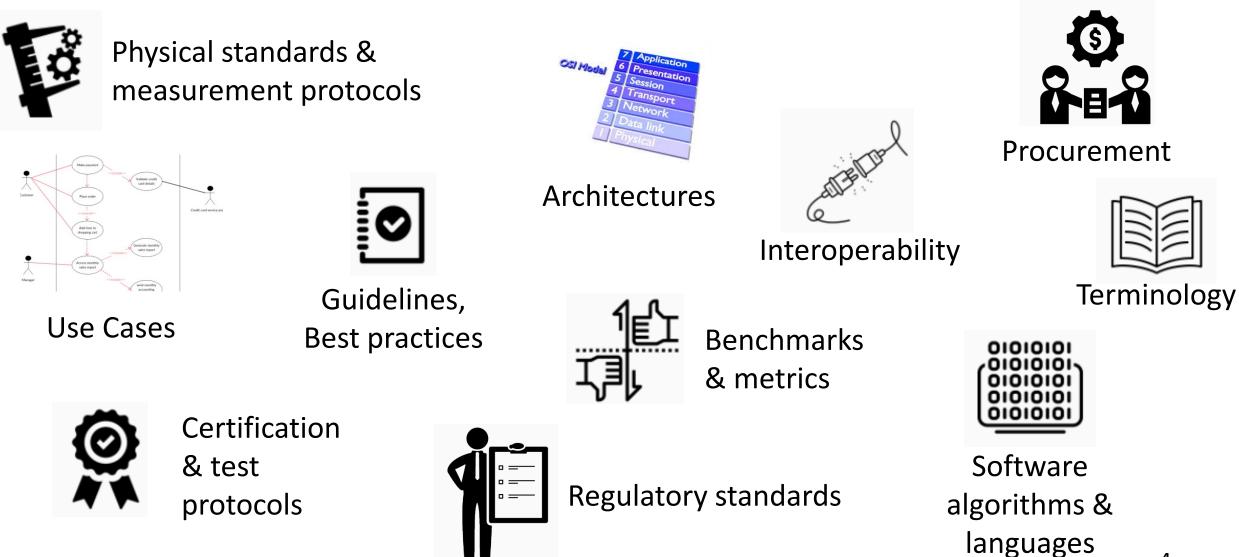
How standards fuel the technology lifecycle

Quantum technology

- A lay of the land
- Quantum standards

Terminology standards: the dream of a common language

Yes, standards do matter



Courtesy: www.treehugger.com

Standards – what are they & why do they matter?

Standards come in lots of flavors

Standards – what are they & why do they matter?

And they're developed in lots of ways

- By:
 - Standards Development Organizations
 - Metrology Institutes
 - Consortium
 - Brute force
- With different ease of access
- With different voting privileges
- Different levels of ongoing support
- In different timeframes

Standards – what are they & why do they matter? When standards work, they...

- Create a common language
- Create fair & open, plug & play markets
- Enable protection of health, safety and environment
- Spur innovation

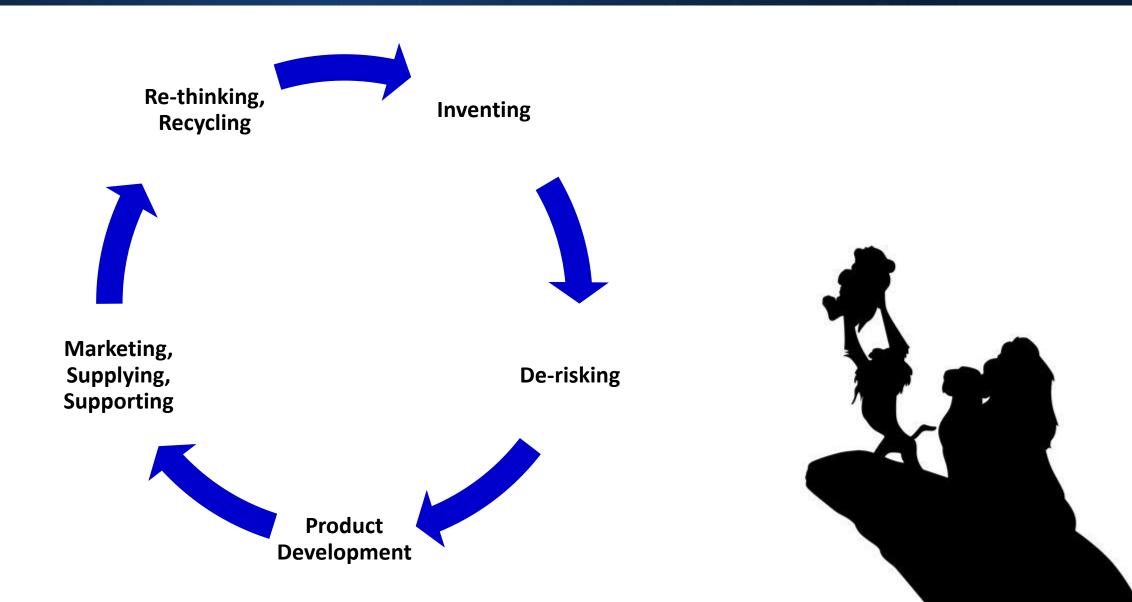
\$ Create business opportunities

NIST


Standards – what are they & why do they matter?

When standards don't work, they...

- Multiply!
- Give unfair political or market advantage
- Create barriers to trade and close markets
- Pick winners & losers / stifle innovation
- Entrench inferior technologies
- Impede the interoperability of products and systems


HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINES, INSTANT MESSAGING, ETC.) 14?! RIDICULOUS! Scon: NEED TO DEVELOP WE. ONE UNIVERSAL STANDARD SITUATION: SITUATION: THAT COVERS EVERYONE'S THERE ARE THERE ARE USE CASES. YERHU IH COMPETING STANDARDS. STANDARDS.

https://xkcd.com/927/

	What it is
Inventing	R&D
De-risking	Prototyping Validating Securing
Product Development	Engineering Scaling
Marketing, supplying, supporting	Engaging customers Logistics
Re-thinking / recycling	Learning from the field

	What it is	What it takes
Inventing	R&D	Stable funding
De-risking	Prototyping Validating Securing	Understanding market, customer needs
Product Development	Engineering Scaling	Commercial investment Robust supply chain
Marketing, supplying, supporting	Engaging customers Logistics	Meeting a real commercial need Consumer trust Plug & play marketplace
Re-thinking / recycling	Learning from the field	Information from the field

	What it is	What it takes	Standards
Inventing	R&D	Stable funding	Terminology Test & measurement
De-risking	Prototyping Validating Securing	Understanding market, customer needs	Characterization & performance Metrics & benchmarks IT Security
Product Dev.	Engineering Scaling	Commercial partner Robust supply chain	Interface
Marketing, supplying, supporting	Engaging customers Logistics	Consumer trust Plug & play marketplace Certification / validation	Interoperability Testbeds Certification Procurement Supply chain communication
Re-thinking / recycling	Learning from the field	Information from the field	Industry 4.0

Role of standards in technology evolution NIST

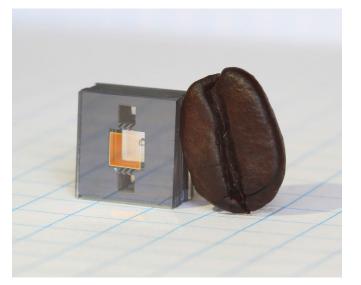
Scientific revolutions don't require standards; industrial revolutions do

	Standards	Map research results to product characteristics
Inventing	Terminology Test & measurement	Provide performance ground truth
De-risking	Characterization & performance Metrics & benchmarks IT Secury	Manage the hype Compare competing technical approaches
Product Dev.	Interface	Create market opportunities
Marketing, selling, supporting	Interoperability Testbeds	through a plug & play framework
Supporting	Certification Procurement	Establish consumer confidence
	supply chain comm	M2M logistics support,
Re-thinking / recycling	Industry 4.0	Performance-to-design loopback

Quantum technology – a lay of the land

Quantum Sensing

Advantage: Exploit the quantum properties of nature to create intrinsically accurate sensors that beat conventional noise limits


Applications: biosensors for MRI and quantum-enhanced microscopy; gravimeters and accelerometers for navigation in GPS-denied environments

What's needed:

- Scaling of critical components, like lasers
- Integrated photonics
- Proving out new physics
- New metrology culture

Where are we now?

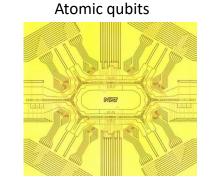
- Commercially available chip-scale atomic clocks (TRL-9)
- Fledgling companies, sensor technologies, NIST on a Chip program (TRL 3-5)

Vapor cell used in next-generation chip-scale optical clock (NIST)

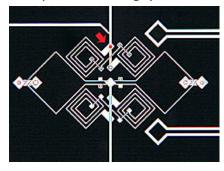
Quantum technology – a lay of the land

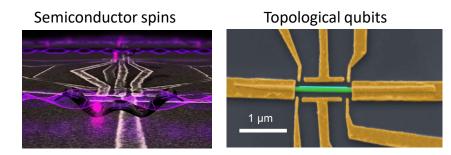
Quantum Computing

Advantage: New computing paradigm for optimization, cryptography and rapid solutions to intractable problems


Applications: breaking cryptography; simulating complex systems; solving the problems of quantum mechanics

What's needed:


- Scalable cryogenics and environmental controls
- Transduction (RF, microwave, vibrating membranes...)
- Readout at room temperature
- Single photonics
- Error correction


Where are we now?

- Commercially available quantum annealers (TRL-8)
- Noisy Intermediate-Scale Quantum (NISQ) research systems available via cloud (TRL-5)
 14
- Full-scale, error corrected, gate-based computer decades offs (TRL-1)

Superconducting qubits

Quantum Communication & Networking NST

Advantage: Provide eavesdrop-proof communications and a new generation of network-

accessible technologies through distributed entanglement

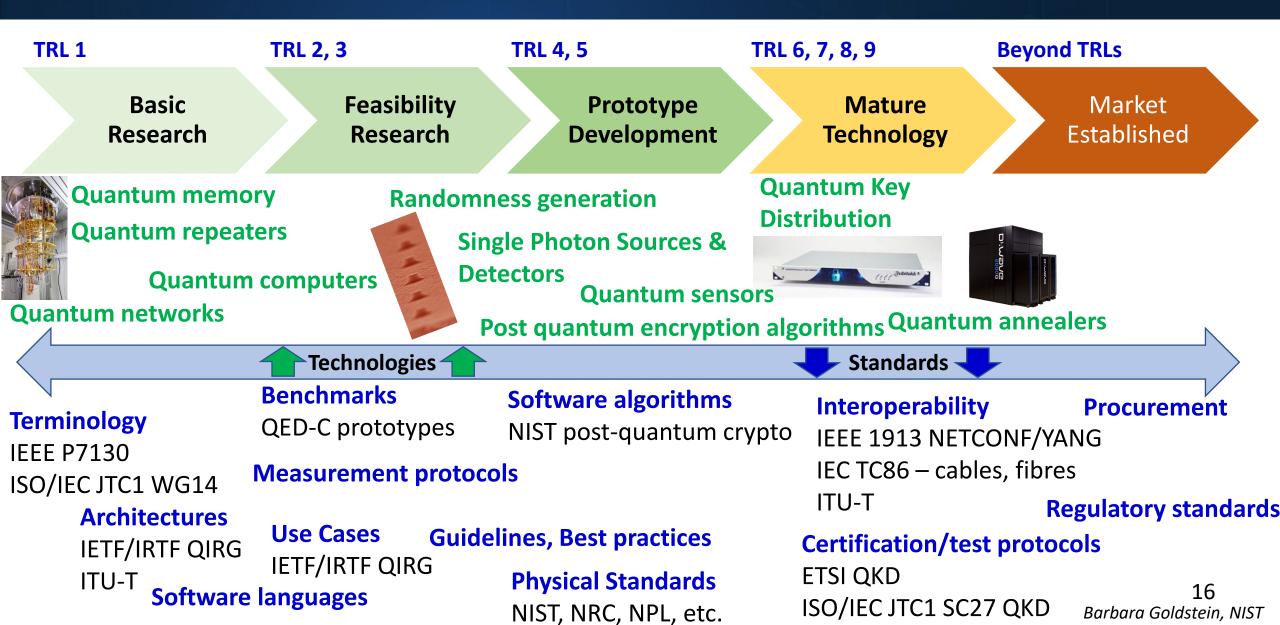
Applications: "blind" quantum computing allowing completely private cloud-based quantum computing; enhanced distributed sensing (a "sensor network" rather than a network of sensors)

What's needed:

- Components: quantum repeaters, memory, interconnects
- Sources and detectors
- Robust, affordable, compact cryogenics
- Terrestrial & space-based platforms

Where are we now?

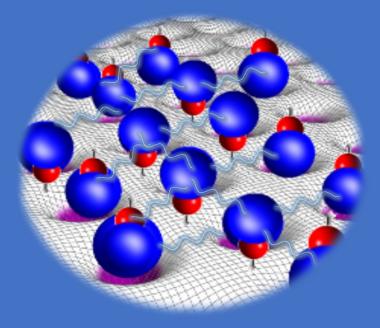
- Simple QKD networks (TRL-7)
- Component technologies (TRL-2)


ASTRATEGIC VISION FOR BARRIAS SQUANTUM Vereau Vereau Vereau Available on whitehouse sourcesto Koganei

• Functional entanglement-based network is decades off

Quantum standards – when is it time?

Standardization readiness & activity



Quantum standards – when is it time?

Standardization Readiness Levels – a first pass NIST

SRL	Stage of Technology Development	TRL	Standardization activities to consider beginning
1	Basic research	 Basic principles observed Concept / application formulated 	Identify critical measurements needed
2	Feasibility researchMultiple independent research groups	3: Proof of concept	 Terminology standards Test & measurement standards
3	Prototype developmentCommercial R&D	4: Component / subsystem validationin lab5: Component / subsystem validationin relevant environment	 Characterization and performance standards Metrics & benchmarks
4	Product developmentMultiple companies	 6: System / subsystem prototype demo – relevant environment 7: System demo in relevant environment 	Interface standards
5	Commercial products offered by multiple companies	8: System completed & qualified9: System proven under expectedoperating conditions	TestbedsCertification standardsProcurement standards

Terminology standards *the dream of a common language*

Bridges communities

- Academic Industrial Research Suppliers Users
- Creates a common perspective, feedback loop

Builds communities

• An "easy" place to start... and to start getting to know each other

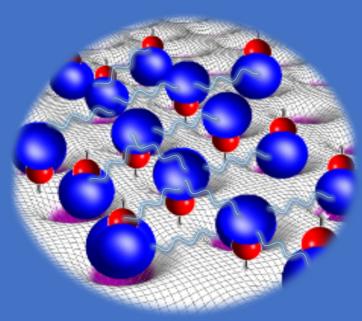
Patience

- Be science-based: Don't start standards before the science has matured
- Be market-driven: Don't push standards before the market is ready

Coordination

 Just because there's no Queen of Quantum Standards shouldn't make it a free-for-all

Collaboration


Multi-SDOs -> common standards

Quality, not quantity

- No more YAQWPs (yet another quantum white paper)
- More is definitely not better!

Looking forward to our discussion!

bgoldstein@nist.gov 240-994-0452

