FTTH Conference 2010 ITU-T Standardization: from G-PON to 10G XG-PON

Optical Access Transmission: XG-PON system aspects

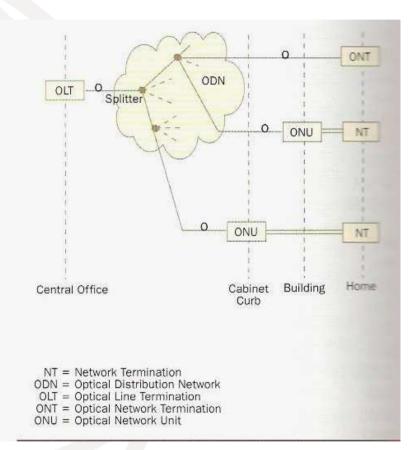
Fabrice BOURGART, France Telecom – Orange Labs.

Presentation Outline

PON Access Overview
Migration from G-PON to XG-PON
Architecture aspects for XG-PON
Physical Layer specifications
Trends.

PON Access Overview

- Optical access deployments happening worldwide, with regional customized flavors built on generic transmission
- Most cost effective transmission solutions found to be PON
 - Since sharing the opto-electronics in the central office
 - Sharing part of the fibre infrastructure through passive splitters
 - Thus featuring an energy efficient solution
- G-PON is a well established technology
 - Featuring 2.5 Gbit/s downstream
 - 1.2 Gbit/s upstream
- Defined by the G.984 series ITU-T Recs.
- G-PON has demonstrated advanced interoperability
- Mainstream deployments undergoing are based on classB+ (13-28dB optical budget) passive optical plant

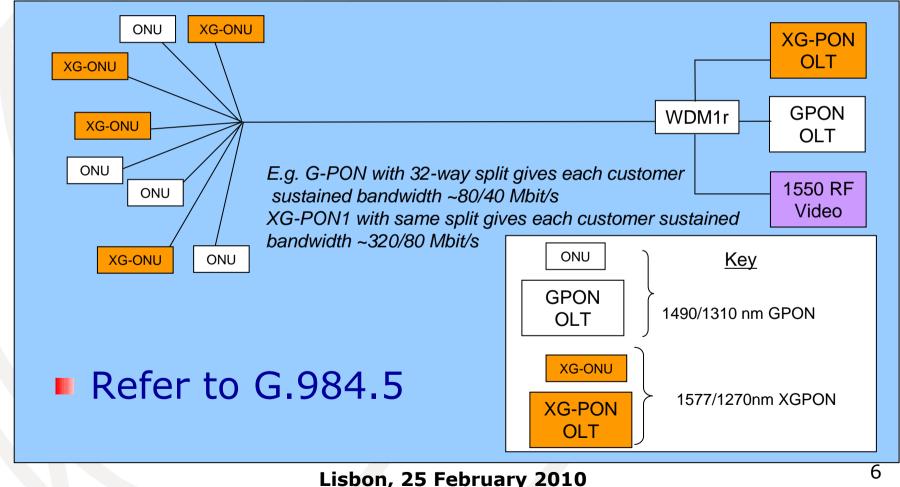

PON Access Overview

G-PON features:

- 64 way passive split
- 20km reach
- various architectures options

G-PON extensions enable:

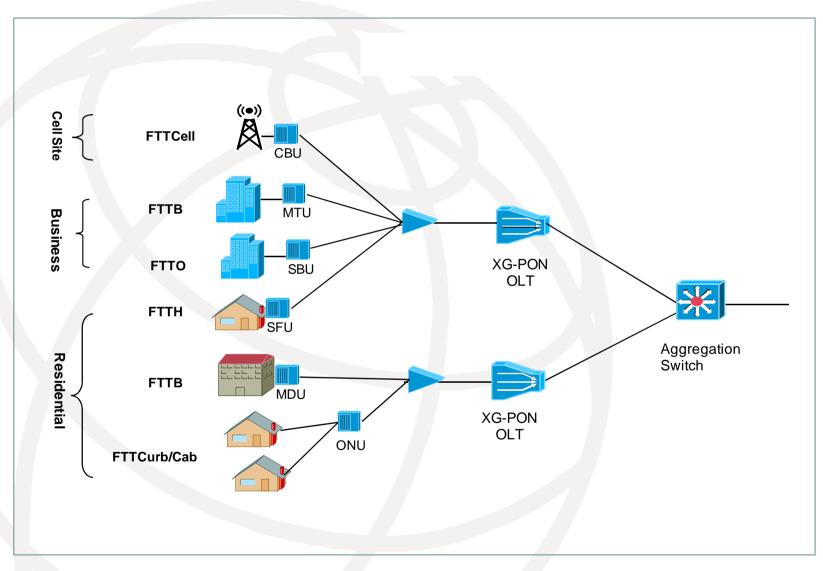
- up to 60km reach
- class C+ optics feature up to 32dB
- Reach extenders enable full capability in distance and split



PON Access Overview

- Operators and vendors need to ever improve their return on investments:
 - Further features added to G-PON
 - Improve G-PON applicability
 - Assure future proof of plant investments
- But anticipating increasing demand for bandwidth
 - Higher line rates necessary => XG-PON
 - Under affordable migration conditions
 - Include G-PON optional extensions

Protection of G-PON & Overlay


G-PON anticipated migration through ONU embedded filter and US window narrowing

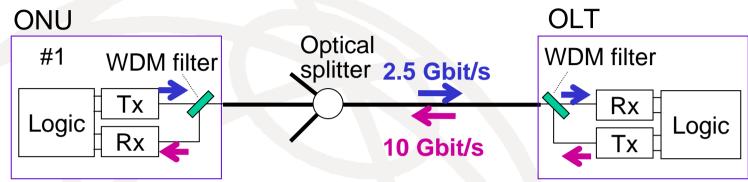
XG-PON General features - G.987.1

- XG-PON conceived to inherit from G-PON:
 - TC layer principles
 - Dynamic bandwidth allocation
 - QoS and traffic management
 - Remote operation of ONU through OMCI (G.988)
 - Integrate and improve G-PON options:
 - Enhanced security mechanisms
 - Enhanced power saving options
 - Synchronizing options enabling mobile backhauling applications
 - Enhanced ODN and performance monitoring

Architectures with XG-PON G.987.1

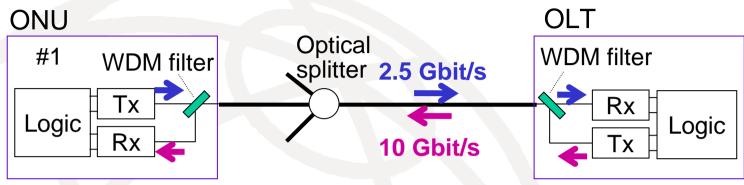
Transmission capabilities of XG-PON

Item	Requirement	Remark			
Upstream speed	2.5 Gbit/s XG-PON1	10 Gbit/s aka XG- PON2 is for future study.			
Downstream speed	10 Gbit/s				
Multiplexing method	TDMA (up) / TDM (down)				
Loss budget	29 dB to 31 dB (Nominal class)	Extended class 33dB under study			
Split ratio	1:64 (1:256 in the logical layer)				
Fiber distance20 km (60 km in the logical layer)		Reach extender under study			
Coexistence	 With G-PON (1310/1490 nm) With RF-video (1550 nm) 				
Lisbon, 25 February 2010 9					


LISDON, 25 February 2010

Physical layer of XG-PON G.987.2

Item	Upstream	Downstream		
Loss-budget	Nominal-1 class: 29 dB, Nominal-2 class: 31 dB			
	Extended class of 33dB is under study.			
Signal	1260 – 1280 nm	1575 – 1580 nm [1]		
wavelength	<i>Same as IEEE 10G-EPON / Enables co-existence with G-PON</i>			
Linerate	2.488320 Gbit/s	9.953280 Gbit/s		
Linecode	Scrambled non-return-to-zero (NRZ)			
Forward error	A weak FEC code - RS(248, 232)	A strong FEC code – RS(248, 216)		
correction (FEC)	FEC support is mandatory for both upstream and downstream			


[1] In the case of outdoor OLT deployment, it is allowed for the operating wavelength to span between 1575 – 1581 nm.

Physical layer implementations: nominal 1 class G.987.2

Class	Direc tion	ONU	ODN	OLT
Nomi nal 1		Min Tx power: 2 dBm Directly Modulated Lasers (DML)	Max loss: 29 dB Path penalty: 0.5 dB	Min Rx power: -27.5 dBm APD receivers
	10G DS	Min Rx power: -28.0 dBm APD receivers	Max loss: 29 dB Path penalty: 1 dB	Min Tx power: 2.0 dBm Externally Modulated Lasers (EML)

Physical layer implementations: nominal 2 class G.987.2

	Direct ion	ONU	ODN	OLT
Nomi nal 2			Max loss: 31 dB Path penalty: 0.5 dB	Min Rx power: -29.5 dBm
			Max loss: 31 dB Path penalty: 1 dB	Min Tx power: 4.0 dBm EML
			Max loss: 31 dB Path penalty: 1 dB	Min Tx power:10.5 dBm EML + Optical amp.

XG-PON work under way

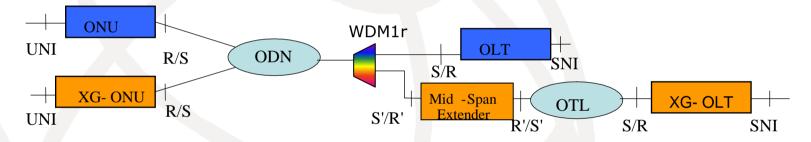
XG-PON recs targeted for June 2010:

- G.987.3 TC layer and framing simplification
 - withdrawal of unused options (observed in G-PON)
 - Optimizing framing for lower power consumption
- G.988 management applicable for G-PON, XG-PON, 1Gbit/s point to point and possibly GE-PON and 10GE-PON
- Upgrade of RE G.984.6 rec. for application to XG-PON

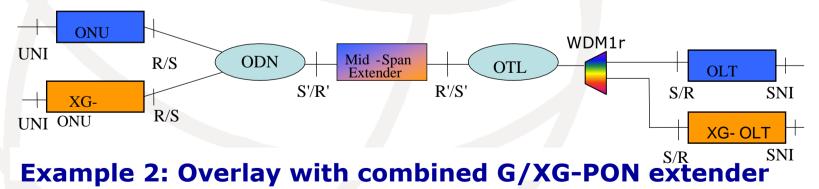
Energy efficiency on XG-PON

Two main targets of PON power saving:

- Continuation of lifeline voice service(s) with backup battery for a longer time, e.g. ranging from 4 to 8 hours in case of mains outage.
- Power saving in nominal PON operation (adapted from G.sup45).


Four possible solutions to be further studied:

- Power shedding at UNI
 - Make unused user-network interfaces (UNIs) sleep.
- Dozing
 - Make the ONU transmitter sleep when no upstream traffic observed.
- Deep sleep
 - Make the ONU transmitter & receiver sleep when no traffic observed.
- Fast sleep/Cyclic sleep
 - Periodic wake up of ONU transmitter/receiver/logics when no traffic observed.


Service compatible parameters are now under discussion.

Reach Extending options for XG-PON

- RE to enable budget for full optical capability 60km and split
- RE to enable optimized OLT location in lower density areas
- RE to inherit from G.984.6 enable fibre saving in OTL section through TDM or WDM multiplexing (under study)

Example 1: Overlay with mid span XG-PON only extender

Lisbon, 25 February 2010

XG-PON G.987.1 further options

- Beyond June consent, G.987.1 listed additional topics that are for further study:
 - Evolution to more symmetrical XG-PON option XG-PON2
 - WDM stacking of G.987.3 XG-PON1 systems
 - Enhanced optical path protection including RE based architectures

Summary

XG-PON G.987 series under way:

- Provide good confidence that ClassB+ plants will be upgradable from G-PON to XG-PON when required by operators
- G.987 with G.984.5 overlay provide a smooth migration path
- XG-PON1 based systems will benefit from extensions consolidating the capability towards full fibre access

Acknowledgement

Many thanks to those who made such progress possible:

 All Q2/15 contributors with special dedication to the Rapporteur and Editors.

The FSAN community for their ever helpful contributions in ITU-T.

Thank you for your attention.

Any questions ?