

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION

STANDARDIZATION

SECTOR

STUDY PERIOD 2017-2020

FOCUS GROUP ON MACHINE LEARNING

FOR FUTURE NETWORKS INCLUDING 5G

ML5G-I-117-R3

Question(s): N/A Shenzhen, China, 5, 7-8 March 2019

INPUT DOCUMENT

Source: Vishnu Ram OV- Independent Research Consultant India;

Navneet Agrawal- TU Berlin

Title: Unified architecture for ML in 5G and future networks

Purpose: Proposal

Contact: Vishnu Ram OV

Independent Research Consultant, India

Tel: +91 9844178052

E-mail: vishnu.n@ieee.org

Contact: Navneet Agrawal

TU Berlin, Germany

Tel: +49-30-31428-498

E-mail: navneet.agrawal@tu-berlin.de

Contact: Hucheng Wang

DaTang Telecommunication Technology@

Industry Holding Co,.LTD P.R.C

Tel: +86 135 5293 4952

E-mail: wanghucheng@catt.cn

Contact: Liang Wang

ZTE Corporation

Email: wang.liang12@zte.com.cn

Contact:
Liya Yuan

ZTE Corporation

Email: yuan.liya@zte.com.cn

Contact:
Mostafa Essa

Vodafone Plc., UK

Tel: +201009570327

E-mail: mostafa.essa@vodafone.com

Contact:
Qi Sun

China Mobile

E-mail: sunqiyjy@chinamobile.com

Contact:
Yami Chen

China Mobile

E-mail: chenyami@chinamobile.com

Contact:
Yan Wang

Huawei

E-mail: jason.wangyan@huawei.com

Contact:
Ping Song

Huawei

E-mail: songping@huawei.com

Contact:
Minsuk Kim

ETRI, Korea (Republic of)

Tel: +82 42 860 5930

Email: mskim16@etri.re.kr

Contact:
Kwihoon Kim

ETRI, Korea (Republic of)

Tel: +82 42 860 6746

Email: kwihooi@etri.re.kr

Contact:
Yong-Geun Hon

ETRI, Korea (Republic of)

Tel: +82 42 860 6557

Email: yghong@etri.re.kr

mailto:navneet.agrawal@tu-berlin.de
mailto:wanghucheng@catt.cn
mailto:wang.liang12@zte.com.cn
mailto:yuan.liya@zte.com.cn
mailto:mostafa.essa@vodafone.com
mailto:sunqiyjy@chinamobile.com
mailto:chenyami@chinamobile.com
mailto:chenyami@chinamobile.com
mailto:jason.wangyan@huawei.com
mailto:songping@huawei.com
mailto:mskim16@etri.re.kr
mailto:kwihooi@etri.re.kr
mailto:yghong@etri.re.kr

Contact:
Masanori Miyazawa

KDDI Corporation JAPAN

Tel: +81-80-5985-6331

E-mail: ma-miyazawa@kddi.com

Contact:
Taro Ogawa

Hitachi, Ltd., JAPAN

Tel: +81-80-5541-1752

E-mail: taro.ogawa.tg@hitachi.com

Contact:
Hideyuki Shimonishi

NEC Corporation , JAPAN

Tel: +81-50-3757-1646

E-mail: h-shimonishi@cd.jp.nec.com

Contact:
Takaya Miyazawa

NICT, JAPAN

Tel: +81-42-327-7274

Fax: +81-42-327-6680

E-mail: takaya@nict.go.jp

Contact:
Shoichi Senda

NICT, Japan

Tel: +81-42-327-5320

Fax: +81-42-327-5519

E-mail: s.senda@nict.go.jp

Contact:
Ved Prasd Kafle

NICT, Japan

Tel: +81-42-327-5471

Fax: +81-42-327-6680

E-mail: kafle@nict.go.jp

Contact:
Kaoru Kenyoshi

NICT, Japan

Tel: +81-42-327-5262

Fax: +81-42-327-5519

E-mail: kaoru.kenyoshi@nict.go.jp

Contact Ping Du

The University of Tokyo, Japan

Tel: +81-3-5841-8201

Fax: +81-3-5841-8201

E-mail: duping@iii.u-tokyo.ac.jp

Contact: Akihiro Nakao

The University of Tokyo, Japan

Tel: +81-3-5841-8201

Fax: +81-3-5841-8201

E-mail: nakao@nakao-lab.org

Keywords: Architecture, ML, patterns, use cases, 3GPP, ETSI, issues, standards.

Abstract: The goal of this document is to analyse and unify various contributions to FG

ML5G related to ML-aware network architectures. As a result, a comprehensive

set of (architectural) requirements are derived from each contribution, which in

turn leads to specific architecture constructs needed to satisfy these requirements.

Based on these constructs, a logical ML pipeline along with the above said

requirements and its realizations in various types of architectures are presented.

Finally the key architectural issues facing the integration of such ML Pipeline in

continuously evolving future networks are listed.

mailto:ma-miyazawa@kddi.com
mailto:taro.ogawa.tg@hitachi.com
mailto:h-shimonishi@cd.jp.nec.com
mailto:takaya@nict.go.jp
mailto:s.senda@nict.go.jp
mailto:kafle@nict.go.jp
mailto:kaoru.kenyoshi@nict.go.jp
mailto:duping@iii.u-tokyo.ac.jp
mailto:nakao@nakao-lab.org

References

[1] 3GPP TS 23501 System Architecture for the 5G System (Release 15)

[2] ML5G-86R2 WG2 deliverable for MPP use case

[3] ML5G-I-49R2 Mobility Pattern Prediction based on ML

[4] ML5G-I-56R1 High Level ML-aware Network Architecture for ML5G

[5] ML5G-I-85 Data Driven ML empowered Network Architecture for 5G & Future Networks

[6] ML5G-I-81 Requirements of using MPP to enable mobility management customization in 5G

network

[7] ML5G-I-72 Applications and optimizations in IoT edge computing using ML

[8] ML5G-I-079R4 Generalization of architecture patterns from use cases

[9] ML5G-I-069 Cognitive Het-Net Use Cases for consideration in WG1

[10] ML5G-I-055R3 Requirements, framework and gaps for Edge Analytics in 5G

[11] Broadband: Acronyms, Abbreviations & Industry Terms

https://www.itu.int/osg/spu/ni/broadband/glossary.html

[12] Edgex Wiki https://wiki.edgexfoundry.org/display/FA/Introduction+to+EdgeX+Foundry

[13] IEC whitepaper on Edge Intelligence

http://www.iec.ch/whitepaper/pdf/IEC_WP_Edge_Intelligence.pdf

[14] ETSI GS NFV-IFA 014 V2.3.1 (2017-08) Network Functions Virtualisation (NFV) Release 2;

Management and Orchestration; Network Service Templates Specification

[15] Intent NBI – Definition and Principles, Open Networking Foundation, ONF TR-523

[16] ETSI GS MEC 003 V1.1.1 (2016-03)

[17] ML5G-I-95R1 Work in progress: Gaps in standards and opensource related to ML for future

networks.

[18] https://github.com/cncf

[19] ML5G-I-100 5G Network slicing End to End Resource Allocation Orchestrator Node

[20] Homing and Allocation Service (HAS) https://wiki.onap.org

[21] ETSI SOL002 Network Functions Virtualisation (NFV) Release 2;Protocols and Data Models;

RESTful protocols specification for the Ve-Vnfm Reference Point

[22] ETSI GS ZSM 001 V0.4.0 (2018-11) Requirements on the zero-touch end-to-end network and

service management

[23] ITU-T Recommendation Q.5001 (ex. Q.IEC-REQ) “Signalling requirements and architecture

of intelligent edge computing”

[24] ML5G-I-109-R2 Requirements and use cases of AI/ML for end-to-end network operation

automation

[25] ML5G-I-108 AI and ML on ICT environment

[26] 3GPP TS 28.554 Management and orchestration of 5G networks; 5G End to end Key

Performance Indicators (KPI) (Release 15)

[27] ML5G-I-087 Grading method for intelligent capability of mobile networks in WG3

[28] ML5G-I-105 Application-Specific Network Slicing through In-Network Deep Learning

Abbreviations and Acronyms

Note: This list includes abbreviations and acronyms not otherwise mentioned in the glossary [11]. The list aims to

 cover the main terms used in this report, but is not exhaustive.

5GC 5G Core

AF Application Function

API Application Programmer Interface

AR/VR Augmented Reality/Virtual Reality

C collector (ML pipeline)

CN Core Network

CNCF Cloud Native Computing Foundation

CNF Cloud native network function

https://www.itu.int/osg/spu/ni/broadband/glossary.html
https://wiki.edgexfoundry.org/display/FA/Introduction+to+EdgeX+Foundry
http://www.iec.ch/whitepaper/pdf/IEC_WP_Edge_Intelligence.pdf
https://github.com/cncf
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/input/ML5G-I-100.docx
https://wiki.onap.org/pages/viewpage.action?pageId=16005528
https://wiki.onap.org/
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/input/ML5G-I-087.docx?d=wab7c160bd8994baba34b701ddcdbe638

CSI Channel State Information

CU Centralized Unit

CUDA CU Data Analytics

DB Database

DNN Deep Neural Networks

DU Distributed Unit

DUDA DU Data Analytics

EMS Element Management System

ETSI European Telecommunication Standards Institute

FMC Fixed Mobile Convergence

GPU Graphic Processor Unit

HAS Homing Allocation Service

M Model (ML pipeline)

MEC Mobile Edge Computing

mIoT massive Internet of Things

MIMO Multiple Input Multiple Output

ML Machine Learning

MLFO Machine Learning Function Orchestrator

ML-ML Machine Learning Meta-Language

MPP Mobility Pattern Prediction

MnS Management Service

NF Network Function

NFV Network Function Virtualization

NFVO Network Function Virtualization Orchestrator

NWDAF Network Data Analytics Function

NMS Network Management Subsystem

NOP Network Operator

NSI Network Slice Instance

ONAP Open Networking Automation Platform

OTT Over The Top

P Policy (ML pipeline)

P-GW, PGW Packet Gateway

PP Preprocessor (ML pipeline)

RAN Radio Access Network

RCA Root Cause Analysis

RDA RAN Data Analytics

RRC Radio Resource Control

SBA Service Based Architecture

Sim Simulator

SO Service Orchestration

SON Self-Optimizing Network

src source (ML pipeline)

UE User Equipment

V2X Vehicle-to-everything

VIM Virtualization Infrastructure Manager

VNF Virtual Network Function

ZSM Zero Touch Network and Service Management

 1. Terms defined in this document

 1.1. ML Pipeline: is defined as a set of logical entities (each with specific functionalities) which

can be combined to form analytics function. ML Pipeline node: Each functionality in the ML

pipeline is defined as a node (eg. Src, collector, preprocessor, model, policy, distributor and

sink).

 src (source): This node is the source of data which could be used as input for ML

function. Examples of src could be UE, SMF [1], AMF[1] or any other entity in the

network including AF [1].

 C (Collector): This node is responsible for collecting data from the src. It may use

specific control protocols to configure the src. Example: it may use 3GPP RRC

protocol [1] to configure a UE acting as src. It may use vendor specific OAM

protocols to configure a AMF acting a src.

 PP (Preprocessor): This node is responsible for cleaning, aggregating data or

performing any other preprocessing needed for the data so that it is fit for ML model

to consume it.

 M (Model): This is an ML model. Example could be a prediction function.

 P (Policy): This node provides a control for operator to put in place mechanism to

minimise impacts on live network, so that the operation is not impacted. Specific

rules may be put in place by operator to safeguard the sanity of the network. Eg:

major upgrades may be done only at night times or when traffic is less.

 D (Distributor): This node is responsible for identifying the sinks and distributing the

ML output to the corresponding sinks. it may use 3GPP RRC protocol [1] to

configure a UE acting as sink.

 Sink: This node is the target of ML output. It takes actions on the ML output.

Example: It could be a UE adjusting the measurement periodicity based on ML

output.

Note: The nodes are defined in [8] Sec 4.1 and are logical entities which are proposed to be

managed in a standard manner (refer MLFO below)) and hosted in a variety of Network

Functions.

The realization of such an ML pipeline (in, say, 3GPP R16 or R17 networks) will result in a

standard method of introducing and managing ML functionality in a 5G network.

The above symbol is used to denote the ML pipeline in general. When this symbol is used, it

denotes a subset (including proper subset) of nodes [8] in the pipeline.

 1.2. Interface 8: is defined (see also [8] Fig. 3) as a multi-level, multi-domain

collaboration interface, between nodes of an ML pipeline which allows the ML pipeline to

be disaggregated and distributed across domains, e.g. between Edge and Core Cloud.

Note: This is a flexible, logical interface, whose realization may depend on extending some of the

existing interfaces, say in 3GPP, MEC, Edgex or other specific plaforms.

 1.3. MLFO: ML function orchestrator: is a logical orchestrator which may be used for

monitoring and managing the ML pipeline nodes in the system. MLFO understands the use

case needs of the NOP from the Intent, it understands the resource status from the NFVO,

and it monitors the model performance. MLFO selects and reselects the ML model based on

the model's performance. The placement of various ML pipeline nodes, based on the use

case specifics, and the corresponding capabilities and constraints of the use case is the

responsibility of the MLFO. Lifecycle management of the model, in close coordination with

the Sandbox is one of the responsibility of MLFO.

 1.4. Chaining: Chaining of ML functions or nodes is the process of connecting them

together to form the complete ML Pipeline. E.g. A src instantiated in the DU may need to be

connected to a Collector and PP in the CU and they in turn, to a Model in the CN to

implement the MPP use case. The chain itself is declared by the NOP in the use case

specification in the Intent and its technology-specific implementation in the network is done

by the MLFO. MLFO utilizes the contraints (e.g. timing constraints for prediction) defined

in the Intent to decide the placement and chaining.

 1.5. ML-ML: is defined as Machine learning Meta Language. This language is used to

specify the constructs needed to add the ML use case and ML pipeline in a declarative

fashion into the service design defined in [14].

 1.6. Intent: Intent is defined as a declarative mechanism. Intent does not specify any

technology implementation methods, such as 3GPP, MEC Network functions to be used in

the ML use case. Hence the use cases are technology-independent and provide a basis for

mapping ML use cases to diverse technology specific avatars. Intents may use ML-ML as a

language for defining use case constructs.

 1.7. Sandbox domain: This is a NOP-internal domain where ML models can be trained,

verified and its effects on the network can be studied. This may host the monitor-optimize

loop, also called closed-loop, and may use a simulator to generate data needed for training or

testing (in addition to utilizing data derived from the network). Sandbox could be used by

the NOP to train, test, monitor and update models during their lifecycle.

 2. Terms defined elsewhere and used in this document

 2.1. MEC: Mobile Edge Computing defined in [16] describes a mobile edge system that

 enables mobile edge applications to run efficiently and seamlessly in a mobile network.

 2.2. EdgeX: EdgeX Foundry [12] is a vendor-neutral open source project hosted by The Linux

 Foundation, which builds a common open framework for IoT edge computing.

 2.3. Capability exposure and corresponding mechanisms: The Network Exposure Function

 (NEF) [1] supports external exposure of capabilities of network functions. External

 exposure can be categorized as Monitoring capability, Provisioning capability, and

 Policy/Charging capability.

 3. Executive Summary

There is a variety of ways in which ML could be incorporated into 5G and future networks. Any of

the layers or strata or NF (network functions) could act as touch points (either source of data which

could aid ML or as target for control mechanisms which implement ML decisions) for ML. This

was reflected in various architecture contributions to Working Group 3 of FG ML5G.

The analysis of various architecture contributions led us to a unified, logical architecture which

represents the technology-agnostic requirements and combines the strong points of all the

contributions. This logical architecture could be instantiated using technology-specific realizations:

3GPP is a technology-specific realization, others could be MEC, EdgeX, etc.

The unified logical architecture allows us to share a common vocabulary and nomenclature for the

ML functions and their interfaces. By applying (or superimposing) this logical architecture on

specific technology like 3GPP, MEC, EdgeX or transport networks, we derive the corresponding

technology-specific realization. This gives us the unique ability to analyse both tech-agnostic and

specific issues, arrive at general solutions which can be standardised (in ITU) and reused elsewhere

(3GPP, MEC, EdgeX).

The scope of this document is to give a brief summary of the requirements presented in detail in

various contributions and analysed in [8]. Based on this summary, a unified logical architecture is

introduced. A detailed derivation of this unification and ML pipeline is described in [8].

The high-level requirements, listed in section 4 of this document, provide specifications for various

aspects of proposed logical architecture. The corresponding aspect of each requirement is listed

under “Req applicant” row in the table. These requirements are neither exhaustive nor mutually

exclusive. The reader must read these requirements as a set of specifications for corresponding

aspect of the architecture.

An ML application can be realized by instantiating logical entities of the ML-pipeline with specific

roles (such as src, collector, sink etc.), and distributing these entities among NFs specific to the

technology (e.g. 3GPP VNFs), based on corresponding requirements of the logical entities (e.g. a

traffic classifier requires to be fed with data summaries every X milliseconds) and capabilities of

the node (e.g. computing power at edge).

The flow of information in an ML-based use case can be represented by a ML-pipeline [8] Let us

take an example of Mobility Pattern Prediction (MPP) [3]. Reader can refer to Fig.1 for a pictorial

overview. The ML algorithms for MPP requires data that are correlated to the location and data-

usage patterns of the user. This data might be obtained from various levels of the network. For

example, at RAN level, the MIMO CSI measurements gives location bearing of the user w.r.t. the

base station, while at transport level, the data-usage patterns of user can be obtained. The data

collected at various collection points (source) needs to be gathered (collector) and pre-processed

(pre-processor) before feeding this data to the ML algorithm (model). Output of ML-algorithm is

then used to apply policies (policy) that will be implemented (sink). Note that although the location

of source(s) and sink(s) depends on the ML-use case, but location of other functionalities, such as

collector, pre-processor, ML-algorithm etc., are not specific to any use case. Instead these

functionalities can be seen as logical entities whose placement (vitualized) depends on the

capabilities of the network and requirements of the use case. This logical representation of a ML

based network application is called ML-pipeline, and described in detail in [8].

The high-level logical architecture (see Fig 1) has three main components: the management

subsystem, the multi-level ML pipeline, and the closed loop subsystem. Together, these subsystems

facilitate the functionality and interfaces needed for ML in future networks. These functions defined

in the logical architecture are logical functions, these blocks could be hosted in various technology

specific network functions and the corresponding interfaces could be realized using extensions of

existing technology-specific interfaces. These technology specific avatars of the logical architecture

are studied in figures 2, 3, etc.

Several key-issues related to ML in 5G and future networks, listed in Section 6, form one of the

most important contribution of this study. These key-issues may give rise to new areas of research

and extensions of current standards to support future networks, which are beyond the scope of the

present document. In essence, the following topics are important:

▪ Need for an ML-ML (Machine learning Meta Language). This will provide interoperable,

declarative mechanism to specify the “intent” of the use case which uses ML in 5G.

▪ The level of capability exposure needed to enable dynamic ML based use cases in 5G and

future networks. The characteristics of capabilities exposure mechanisms for future

networks need to be studied, especially in the context of migrating existing networks to

future ML based ones.

▪ MLFO: ML function orchestrator: A logical orchestrator which may be used for monitoring

and managing the ML pipeline nodes in the system. Operations on ML in future networks

would be controlled via MLFO (eg. Compression, scaling, chaining, updates, optimizations

etc).

Future Steps

 Develop a future standardization direction, taking into consideration the activities currently

undertaken by the various standards developing organizations (SDOs), industry and open-

source forums.

 Liaise with these SDOs and forums to arrive at common understanding and channel

contributions into standardization activities on ML in 5G and future networks.

The sections in this document are structured as below. Section 4 describes the high level

requirements. These are derived from various use cases and architectural contributions. Section 5

describes both a logical architecture and its technology-specific realizations. Section 6 lists the key

issues encountered by the FG while analysing these concepts.

 4. High level requirements

In this document, requirements are classified as follows:

 The keywords "is required to" indicate a requirement which must be strictly followed

and from which no deviation is permitted if conformance to this document is to be

claimed.

 The keywords "is recommended" indicate a requirement which is recommended but

which is not absolutely required. Thus such requirements need not be present to claim

conformance.

 The keywords "can optionally" and "may" indicate an optional requirement which is

permissible, without implying any sense of being recommended. These terms are not

intended to imply that the vendor's implementation must provide the option and the

feature can be optionally enabled by the network operator/service provider. Rather, it

means the vendor may optionally provide the feature and still claim conformance with the

specification.

ML-unify-001
Multiple sources of data are recommended to be used to take advantage of correlations in data.

Req applicant Core/general

Significance/Description

In future networks, sources of data may be heterogenous, integrated with different Network

Functions, and may report different formats of data. These varied “perspectives” can provide

rich insights upon correlated analysis.

Example: Analysis of data from UE, RAN, CN and AF is needed to predict potential QoS related

issues in end-to-end user flows.

Thus, the architecture construct for ML pipeline to be able to collect and correlate the data from

these varied sources, is needed.

Traceability/Examples

ML5G-I-069 [9] describes SON modules that monitor and listen to all network alarms, KPI and

then takes proper action to clear alarms or enhance network KPIs, or give network design

recommendations without human intervention.

ML-unify-002

Multiple technologies and network layers (RAN, Core, Transport, 2G, 3G, future networks) is

required to be supported, even non-3GPP external elements is recommended to be interfaced

with, to achieve end-to-end user experience.

Req applicant Core/general

Significance/Description

Future networks would have multiple technologies coexisting side by side eg. licensed and

unlicensed wireless technologies, fixed and wireless converged (FMC) technologies, legacy and

future technologies. Emergence of Network slicing [1][19] is one example where vertical

technologies (eg. V2X) and their integration into future networks are important.

Thus, it is important for that architecture to be capable of overlay with multiple underlying

technologies (eg. 3G, 4G, 5G) and even support application functions like in-car entertainment

or streaming data from drones or AR/VR headsets.

The 5G End to end Key Performance Indicators (KPI) are defined in technology-specific

standards (eg. See [26]).

Traceability/Example

ML5G-I-069 [9] describes the cognitive AI concept, in which data from network elements

beside some other external elements, such as (sensors, power circuits and different IOT modules)

are utilized to control and monitor these elements. This data is then used in various types of

network parameter optimizations to achieve gains in coverage, capacity and quality.

ML-unify-003

The network architecture is required to support multi-level and distributed instantiation of the

ML Pipeline.

Data from different levels may be able to enrich multiple ML Pipelines (Algorithms) as needed.

ML pipelines are required to be multi-level and/or multi-domain, connected together via logical

interface 8.

An ML pipeline may be instantiated in multiple levels (eg. core, edge, MEC).

Req applicant Core/general

Significance/Description

Cloudification, SBA, flexible HAS imply that various network functionalities can be placed

dynamically in multiple levels, domains and clouds. Thus, the ML pipeline should also be able

to span these levels and interface accordingly. The functionality of the ML pipeline too would

span these levels, domains and clouds based on the homing allocation criteria.

Traceability/Example ML5G-I-069, ML5G-I-79R4, ML5G-I-72. .

ML5G-I-105 [28] describes a use case where feature extraction (src) can be placed in P-GW and

feature data is sent (over interface 8) to MEC where deep learning model is hosted.

ML5G-I-81 [6] describes the multiple levels where analytics (ML pipeline) may be hosted in the

network (e.g. RAN, AMF) utilizing locally available data as input while performing mobility

pattern predictions or slice configurations.

ML-unify-004
When realizing an ML application using the ML pipeline, it is recommended that the number of

logical entities impacted is kept minimum . In the ideal case, it is required to impact only src

and sink of the ML pipeline.

Req applicant Core/general

Significance/Description

Use case definition for ML in future networks will be done based on existing (or new) services

or functions in the network. Use case definition for ML has to be loosely coupled with the

network service definition in future networks,.

Note: Based on the use case definition (refer to Intent), homing and other characteristics of the

ML pipeline (eg. chaining) are decided. The Src and the Sink are points of tight integration (eg.

APIs) with the technology specific network functions (eg. 3GPP RAN). The other nodes in the

ML pipeline may be generic and does not have tight integration with technology specific

network functions. Clear interface points between the ML pipeline and the underlying

technology are proposed (at the source or sink or MLFO).

Traceability/Example

ML5G-I-79R4.

ML5G-I-105 [28] describes feature extraction (src) and traffic classification (sink) placed in the

user plane of P-GW. These are points where user plane data is handled by the ML pipeline

nodes. The other nodes in the ML pipeline (e.g. the DNN model) does not have such interface

dependencies with the 3GPP NFs.

ML-unify-005

Logical entities of the ML pipeline are required to be capable of splitting their functionalities

and/or be hosted on separate technology-specific nodes. Similarly, multiple logical entities are

required to be capable of being implemented on single node.

Req applicant Core/general

Significance/Description

In future networks, homing allocation service for network functions will optimize the location

and the performance accordingly. NFVO plays an important role in this.

To carry forward such benefits to the ML use case, similar optimizations should be applied to

ML pipeline nodes as well. Moreover, the constraints applicable to an ML pipeline (e.g. Training

may need GPU and may need to be done in a sandbox domain) may be unique.

Traceability/Example

ML5G-I-49R2 [3] gives scenarios where depending on the latency budget, data availability and

other considerations for MPP, ML pipeline could have the src and model hosted in core, edge or

MEC.

ML-unify-006
An interface between ML pipelines of multiple levels may transfer trained models. (This may be

one functionality of interface 8)

Req applicant Interface-8

Significance/Description

Training the models has certain specific needs eg. availability of certain kinds of processors,

availability of data. Once the training is done, it has to be sent to the NF which is hosting the

model. This could be UE, RAN or CN as examples from 3GPP. Training may be done separately

from the live network. Thus, sending trained models across multiple levels (eg. core, edge) is an

important requirement.

Traceability/Example

ML5G-I-085 [5] describes the scenario where DUDA hosts the real-time RAN data collection

and pre-processing, prediction, parameter optimization and training tasks with low

computational complexity in DU. DUDA needs to offer data feature requested for training

prediction/decision models to the CUDA (CU Data Analytics) after pre-processing, while

CUDA can assist DUDA to conduct some computationally intensive model training tasks. The

trained model can be sent to the DUDA for deployment.

ML5G-I-105 [28] describes Deep learning done at the MEC and trained model (classifier)

updated at the P-GW.

ML-unify-007
Interface between ML pipelines of multiple levels may transfer data for training or testing

models. (This may be one functionality of interface 8)

Req applicant Interface-8

Significance/Description

Certain domains where the data is available may not have the training capabilities (eg. Resource

contrained edge networks). In such cases, there may be a need to send the data for training or

testing across to domains where the capacity for such operations is available (eg. Central data

center).

Traceability/Example

ML5G-I-085.

ML5G-I-108.

ML5G-I-105 [28] describes the case where feature extraction from user plane is done at P-GW

and the feature data is then sent to the model at MEC for training.

ML-unify-008

It is required to be possible to place/host the ML pipeline in a variety of network functions (eg.

CN, MEC, NMS, etc) in a flexible fashion.

The location of the logical ML pipeline nodes is recommended to be decoupled from their

functionality, except in case of performance constraints.

Req applicant MLFO, placement

Significance/Description

An orchestrator function which understands the needs and constraints of ML functions is needed

to place/host the ML pipeline nodes at appropriate network functions. Some of the constraints

could be availability of data which is specific to the use case, data transformation capabilities,

performance constraints, training capabilities and model characteristics (eg. if the model is a

neural network, then a GPU based system is desirable). Capability exposure is needed for

placement and MLFO exploits this to achieve placement.

Traceability/Example

ML5G-I-49R2 [3] describes the case where based on the requirements of the use case, short-term

or long-term predictions, the ML pipeline nodes may be hosted closer to the edge or at the core

network. The placement may also be influenced by considerations on data availability.

ML5G-I-79R4

ML-unify-009

Certain interfaces (eg. Interface 8) may be realized or extended using existing protocols (eg.

RRC, GS MEC 011, MnS) [16]

Src and Sink may need specific interfaces or APIs to extract data or configure parameters. For

example: A Src running in the UE may use specific APIs to extract data from an VoLTE client.

The ML pipeline may use interfaces provided by underlying platform (eg. EdgeX services) as

source of data or sink of configurations. In that sense, these platform specific APIs may act as

realizations of an interface to src and sink.

Traditional 3GPP interfaces like Ng and Xn may need extensions so that they can realize the

needs of the ML pipeline.

Inter domain interfaces between edge-core and edge-edge, may be abstracted using interface 8,

but realized using p2p platform specific interfaces (eg. EdgeX interfaces).

Req applicant Realization, extension (eg. to 3GPP, MEC, EdgeX)

Significance/Description

There may be cases where a tight coupling at integration stage between the ML pipeline src and

sink and the NF may not be avoidable. Eg. consider the case where the src runs in the RAN but

needs measurements from the UE. In this case, the RAN needs to configure the UE for this

measurement using RRC. In certain cases, an extension of such interfaces may be needed to

achieve the ML function in the use case.

Traceability/Example

ML5G-I-49R2 [3] describes that Ng interface needs to be extended to support the UE level or

flow level related information interaction between RAN (RDA/CU Data Analytics) and core

network.

ML5G-I-56R1, ML5G-I-085.

ML5G-I-072 [7] describes an edgeX based use case where edge-core interface is needed for

deep-learning done at cloud and ML based prediction at the edge cloud.

ML-unify-010

It is required that a standard method exist to translate the use-case specifications (eg. Intention)

into an analytic ML pipeline (defined as Intent in rest of the document)

It is recommended that a machine readable format is used to instruct use-case specifications to

MLFO in order to instantiate the ML Pipeline.

Req applicant Design-time: Intent, ML-ML

Significance/Description

Automation using intent specification and corresponding translation into configurations is a

characteristic of future networks. Extending this technique to ML, intent specification of ML use

case and correspondingly translate that into pipeline configurations should be supported. Note:

Intent specification of ML use case allows overlaying of ML on top of existing declarative

specification of network services, eg. those defined in [14].

Traceability/Example

ML5G-I-56R1 [4] describes Intention interpretation is a kind of solution for intelligent

configuration. Intention interpretation function can translate it into the configuration that can be

implemented in network devices.

ML5G-I-79R4

ML-unify-011 Intention is required to specify the sources of data, repositories of models, targets/sinks for

policy output from models, constraints on resources and use case.

Req applicant Design-time: Intent. ML-ML

Significance/Description

The separation between technology agnostic part of the use case and technology specific

deployment (eg: 3GPP) is captured in the design time of future network services. Intent

specification for the ML use cases achieves this separation for the ML overlay. See Sec 1.5 and

Sec 1.6 for definitions.

Traceability/Example

ML5G-I-56R1 [4] defines Intent as a template which captures the requirement of the operator.

Intention interpretation function can translate it into the configuration that can be implemented in

network devices, it goes further to say that the template might even be in a natural language.

ML-unify-012 Any split of the ML pipeline is required to be flexible based on the use cases and contraints

defined in the intent.

Req applicant Design-time: Intent, ML-ML

Significance/Description Platform capabilities may change (hardware may be added or removed), network capabilities

may change (capacity may increase or decrease), NF's may be scheduled or (re)configured

dynamically by the NFVO. These dynamic changes may necessitate a change in the split and

placement of the ML pipeline (eg. A decision may be taken to colocate the source and collector

based on changes in the link capacity, or a decision may be taken to instantiate a new source

based on scale out of a VNF, etc).

Traceability/Example ML5G-I-56R1

ML-unify-013 (NOP external) 3rd party service providers are required to be able to describe the requirements

and capabilities for an ML pipeline using Intent.

Req applicant Design-time: Intent, ML-ML

Significance/Description

3rd party service providers may offer innovative services on top of future networks. For ML, it

means new algorithms. A collaboration between 3rd party providers and operators may bring new

sources of data or aggregation mechanisms (eg. a new smartphone application which interfaces

with sensors on the UE). Intention as a declarative mechanism should extend the capabilities to

include such 3rd parties, and they should be able to include these nodes into the specification so

that end users can enjoy such innovative services offered by 3rd party service providers.

Example of such a use case: 3rd Party (eg. Skype) want to optimize call quality over the network

by running ML application that configures network parameters. 3Rd party can setup this ML use-

case using interface to ML Pipeline.

Traceability/Example

ML5G-I-56R1

ML5G-I-105 [28] provides a use case where deep learning could be provided as an MEC

application.

ML-unify-014 Time constraints of use cases are required to be captured in the Intent.

Req applicant Design-time: Intent

Significance/Description

Different ML use cases have varied time constraints. At the tightest scale, RAN use cases like

beamforming, scheduling, link adaptation would have 50us – 100us latency criteria. Next comes

transport and 5GC use cases which need 10ms-s latency criteria. The least demanding in terms

of latency are management level use cases like anomaly detection, coverage hole detection, etc

which can afford minutes, hours or days of latency. These criteria form an important input to the

MLFO while determining the placement, chaining and monitoring of an ML Pipeline.

Traceability/Example ML5G-I-085

ML-unify-015

Placing and split of ML pipeline nodes is required to consider various constraints (eg. resource

constraints of the NF, latency constraints specific to the use case)

The model is required to be able to be placed in a flexible manner in an NF which is most optimal

for the performance of the use case (eg. As per [26]) and constraints defined in the intention.

The split of the ML pipeline is required to be flexible based on the use cases and constraints

defined in the intention.

Placement and hosting of ML pipeline are required to be flexible based on constraints mentioned

in the intent. eg. placement could be in the core, RAN, or MANO.

It is recommended that the constraints for online training and prediction for real-time applications

(e.g., 1ms~10ms) are captured in the intent. This may be input to placing these nodes in Network

Functions which can provide optimal performance for the use case (eg. As per [26]).

Req applicant MLFO, intent, constraints

Significance/Description The positioning and placement of ML pipeline nodes onto VNFs forms a major part of the

realization of the ML use case with a specific technology (eg. 3GPP).

Thus, it forms the link between 2 domains: tech-agnostic ML pipeline (overlay) and tech specific

network underlay (eg. 3GPP).

The needs, constraints and status of each domain needs to be taken into consideration while

making this mapping or linkage.

Thus, these requirements form an important part of MLFO which achieves this mapping of

overlay to underlay and provides a smooth migration path to the operator.

Traceability/Example

ML5G-I-49R2, ML5G-I-56R1, ML5G-I-085.

ML5G-I-105 [28] describes user plane data classification using DNN. Since this is a latency-

senstive application, the model is hosted at the P-GW, whereas the training could be done at

MEC.

ML-unify-016
Model selection is required to be done at the setup time of the ML pipeline, using data from the

src.

Req applicant MLFO: setup

Significance/Description

Advances in ML algorithmics suggest that in future networks there would be models with varied

characteristics (eg. using variety of optimization techniques and weights) which suit different

problem spaces and data characteristics.

ZSM [22] requirement brings in discovery and onboarding of source of data dynamically. To

extend the ML use case to such devices and sources of data, model selection has to be done

dynamically, based on the data provided by the source.

Traceability/Example
ML5G-I-56R1 describes the requirement for model selection based on requirement of the

operator specified in the intent.

ML-unify-017

Model training is required to be done in sandbox using training data.

A sandbox domain is recommended to be used to optimize the ML pipeline. Simulator

functions hosted in the sandbox domain may be used to derive data for optimizations.

Req applicant Non-functional (sandbox)

Significance/Description

Model training is a complicated function, it has several considerations: use of specific hardware

for speed, availability of data (eg. Data lakes), parameter optimizations, avoiding bias,

distribution of training (e.g. Multi-agent reinforcement learning), the choice of loss function for

training. training approach used exploration of hyper parameters, are some examples of them.

Moreover, in future networks, operators would want to avoid the disruption of service while

model training and update are performed.

These considerations point to use of a simulator for producing the data for training the models,

as well as its use in a sandbox domain.

Traceability ML5G-I-56R1, ML5G-I-79R4

ML-unify-018
The capabilities to enable a closed loop monitoring and update, based on the effects of the ML

policies on the network, are required.

Req applicant Non-functional (closed loop)

Significance/Description

Closed loop is needed to monitor the effect of ML on network operations. Various KPIs are

measured constantly and the ML algorithm's impact on them as well as on the ML pipeline itself

(due to operations of the MLFO) are monitored and corrected constantly. These form inputs to

the simulator which generate data that can cover new or modified scenarios accordingly in future

(eg. a new type of anomaly is detected in the network, the simulator is modified to include such

kind of data which can train the model to detect that too).

Traceability

ML5G-I-56R1.

ML5G-I-109-R2 describes the case where continuous improvement of the automated fault

recovery process workflows is important. Hence, not only the RCA is provided to the

autonomous functions for configuring the NFVO, the effect produced by ML in autonomous

functions are evaluated and used in a closed loop to optimize the autonomous function itself.

ML-unify-019

A logical orchestrator (MLFO: ML function orchestrator) is required to be used for monitoring

and managing the ML pipeline nodes in the system.

MLFO monitors the model grading (refer [27]), and Model re-selection is recommended to be

done when the grading falls below a predefined threshold.

Req applicant MLFO (monitoring)

Significance/Description

The varied levels and sources of data (core, edge), including the simulator and the sandbox

domain implies that there could be various training techniques including distributed training.

Complex models which are chained (or derived) may infact be trained using varied data. The

performance of such models could be determined and compared in the sandbox domain using

simulator.

Based on such comparisons, operators could then select the model (based on internal policies)

for specific use cases. This could be used in conjunction with MLFO to re-select the model.

Note: grading may involve network performance grading also along with model grading.

Traceability ML5G-I-79R4, ML5G-I-56R1

ML-unify-020

Flexible chaining of ML functions is required to be done based on the hosting and positioning

on different NFs and domains. This is to realize the hybrid or distributed ML functions (refer the

traceability below for details).

ML pipeline deployment may be split and multi-level. Chaining of ML pipeline nodes across

these levels may be needed to achieve the use case (eg. the split of ML functions based on gNB-

CU/gNB- DU architecture defined in [5]).

Chaining of logical functions may be used to build complex analytic ML pipeline.

Req applicant MLFO (chaining)

Significance/Description

NFV architecture along with SBA and the emergence of service orchestration mechanisms like

ONAP will enable operators, in near future, to rapidly design, develop and deploy network

services. MLFO needs mechanisms including flexible chaining to keep up with the innovation in

the underlay space. As the underlying network service evolve and deploy rapidly, so does the

ML pipeline on top of them, using these MLFO techniques. This requirement aims to give the

ML pipeline overlay, the ability to adapt to dynamic service creation and orchestration.

Traceability ML5G-I-56R1, ML5G-I-085, ML5G-I-081, ML5G-I-79R4

ML-unify-021
Support for plugging in and out new data sources or sinks to a running ML pipeline is a

requirement

Req applicant MLFO (unstructured data)

Significance/Description

Certain advanced network services to be defined in future networks (eg. mIoT) require handling

of unstructured data from a huge number of sources which may be under ZSM [22]. One such

use case is the analysis of logged data for anomaly detection in networks. MLFO needs

mechanisms to perform operations like selecting models based on metadata derived from

unstructured data and scaling the ML pipeline nodes based on the incoming data.

Traceability ML5G-I-072

ML-unify-022 A sharing mechanism for data and inputs between various nodes in the pipeline is

recommended to be in the form of a distributed, shared, highly performant data storage.

Req applicant General: core: DB

Significance/Description

Cross layer, cross domain sharing of data across various levels, domains and clouds is needed to

take correlated ML decisions in future networks. Concepts like data lakes are emerging in future

clouds and can be exploited in operator clouds too. Governance mechanisms for data are

mandated by regulations in certain areas.

Traceability ML5G-I-79R4, see also fig 5a and 5b in this document.

5. Unified Architecture

Unified architecture stands for a common high level logical architecture for ML in future networks.

However, to understand the deployment options in various technology domains, this architecture

has to be considered along with its technology-specific realizations. These are described in this

section.

5.1 Unified Logical Architecture

The unified logical architecture is derived from the high level requirements described in the

previous section. Reuse of existing standards wherever possible, is a guiding principle applied

while arriving at this architecture. This exercise allows us to study the gaps of existing

standards[17]. The level of abstraction used while deriving this logical architecture is such that,

while all the basic requirements can be captured using these building blocks, extensions and

technology specific customizations are possible in each standard domain (eg. 3GPP).

The three main building blocks of the unified logical architecture (Fig 1) are:

 Management subsystem: This includes orchestration, various existing management entities

(eg. VNFM, EMS), management of platform (eg. VIM). In addition, we also define a new

logical entity MLFO (refer to Sec 1.3 above). Monitoring and management of these

functions is achieved using service based architecture defined in [1]. Intent (refer to Sec 1.6)

allows the operator to specify and deploy ML services on top of existing ones without tight

coupling with the underlying technology used for realization.

 Multi-level ML pipeline: The ML pipeline (refer to Sec 1.1) is a logical pipeline, which can

be overlaid on existing network functions (eg. VNFs as defined by ETSI or CNF as defined

by CNCF). MLFO provides instantiation and setup services for the ML pipeline, using in

turn the services of the NFVO where needed. The deployment of an ML pipeline may span

across different levels and domains or clouds. MLFO coordinates this deployment. In this

context, interface-8 (refer to Sec 1.2) is important to achieve the chaining of such a multi-

level deployment. Specific integration aspects of such an overlay of an ML pipeline on a

specific technology (e.g. how to integrate ML pipeline across various NF's in 3GPP CN and

RAN) may require extension of existing interfaces or definition of specific APIs. Some of

these would be part of the standards gap analysis [17].

Note-1: in Fig 1, we show examples of three domains: CN, transport and RAN. These are treated as

administrative domains. These may be owned, operated and administered by different entities (e.g.

in roaming cases).

Note-2: in Fig 1, we show an example of the MLP (ML Pipeline) overlay on these domains.

However, based on specific use cases, other ways of distributing the MLP nodes are possible. These

are shown in section 5.2.

 Closed-loop subsystem: future wireless networks present a dynamic environment. Various

conditions may change in the network (eg. air interface conditions, UE's position, platform

capabilities and platform capacity etc). A closed loop subsystem allows the ML pipeline to

adapt to this dynamic environment. It is driven by a simulator and monitored by the MLFO

using the parameters defined in the Intent. Such a “sandbox” environment allows operators

to study the effect of ML optimizations before deploying them on a live system. As

mentioned in Sec 1.6, updates from the network are fed back into the closed loop so that the

ML pipeline can adapt to dynamically changing environment in the network.

5.2 Realization(s) of the logical architecture

Fig 2 below (see also [3]) gives an example of realization of the logical architecture on a

3GPP system along with MEC and management systems. The realization is achieved in the

following manner:

 Use the ML Pipeline (refer to Sec 1.1) to show the positions in this realization wherever

the nodes in the ML pipeline could be hosted. e.g. CN, RAN, MEC, NMS, etc.

▪ Consider arrows: 1->2->4->ML pipeline1: This pipeline uses inputs from the UE to

make predictions at CN (e.g. MPP based use cases).

▪ Consider arrows: 9->2->4->ML pipeline1: This pipeline uses inputs from the RAN

and possibly a combination of UE and RAN, to make predictions at CN (e.g. MPP

based use cases).

▪ Consider arrows: 10->7->ML pipeline2->8: This pipeline uses inputs from the

MEC platform to make predictions at the edge and apply these back to MEC. It

could also use side info from UE and RAN (e.g. caching decisions made at the

MEC, local routing decisions at the MEC).

▪ Consider arrows: 3->4->ML pipeline1->5: This pipeline uses inputs from CN and

possibly a combination of UE and RAN inputs to make predictions at CN, apply it

to NMS parameters which may in turn affect configurations in different domains

(e.g. SON decisions made at the CN).

▪ Consider arrows: ML pipeline3->6: local predictions at the NMS which may in turn

affect configurations in different domains (e.g. parameter optimizations based on

data analytics).

 Call out extensions in 3GPP interfaces or MEC interfaces where applicable.

▪ Consider arrow 1 below: this could be realized as an extension of RRC.

▪ Consider arrow 2 below: this could be realized as an extension of N2 interface [1]

▪ Consider arrow 5 below: could be realized via a reuse of ETSI SOL002 [21]

▪ Consider arrow 10 below: this could be realized via a reuse or extension of GS

MEC 011 [16]

 Give instances of constraints applicable for placement of the ML pipeline in 3GPP.

▪ UE is a resource constrained device, hence only a source is instantiated in the UE.

▪ As mentioned in ML-unify-014, RAN and MEC might have latency constraints on

their use cases. Hence those models are hosted in the RAN itself as ML pipeline

2. Those data from the RAN and UE which are not used in such latency-bounded

use cases, are sent to the CN via arrow 2 below.

Fig 2: Multi-level ML pipeline in 3GPP and MEC

Fig 3 below (see also [1]) gives the interface points for the logical ML pipeline with various

technology services. The interface points are achieved in the following manner:

 The ML pipeline is loosely coupled with 3GPP and other technologies. The ML pipeline has

clear interface points where it interacts with 3GPP Network services. This allows the ML

pipeline to evolve separately from underlying technologies, while allowing all forms of

3GPP and non-3GPP networks, even simulated ones, to benefit from ML services.

 In Fig 3, MnSx stands for producer of analytics services (and consumer of data) whereas

MnSx' stands for consumer of analytics service (and producer of data).

Note: data may be shared as described in ML-unify-022.

 This also provides an interface point for 3rd party service providers who may provide

innovative services on top of future networks. These may be ML-based, e.g. new ML

algorithms or optimization mechanisms, or an OTT service (eg. VoLTE). A plugin

mechanism for these 3rd party providers is needed to handle the ML needs of such services.

Intention as a declarative mechanism should extend the capabilities to include such 3rd

parties, and they should be able to include these nodes into the specification so that end

users can enjoy such innovative services. Please see ML-unify-13 for an example of such a

service.

 Network Operator may introduce services (eg. SON based on analysis of data from the

network) which takes advantage of the ML pipeline. These too, interface with the ML

pipeline instances via MnS interface points.

In Fig. 4 (see also [4]) below gives another example of a realization of the ML pipeline in a 3GPP

network. Here the focus is on:

 Standard mechanisms for configuration of the ML pipeline using MLFO. MLFO inturn may

use Intent as an input.

 The MLFO interface (see arrow 1 below) includes monitoring and management of the ML

pipeline using MLFO (including model selection and reselection, see also ML-unify-019).

Fig 3: MnS based interface points for ML Pipeline

 Distributed and multi level placement of src, sink and ML pipeline in general, using MLFO.

 Slice creation based on user data (see [28]), integration with application logic (see [9]) are

examples of use cases which can be achieved by placement of src and sink as shown below.

Such placement of src and sink may require specific interfaces which integrate the data

collection (see arrows 2,3,5) and network configuration (see arrow 4) respectively.

In Fig. 5 below (see also [7]), we demonstrate the realization of the ML pipeline in the EdgeX [12]

which is a vendor-neutral open source software platform. This enables interaction with devices,

sensors, actuators, and other IoT objects. It provides a common framework for Industrial IoT edge

computing. The supporting services (SS) layer of EdgeX layer provide edge analytics and

intelligence.

To demonstrate the realization of the ML pipeline:

 ML Pipelines are instantiated in core cloud and edge clouds. For example, in Fig. 5, three

ML pipeline instances are shown. They coordinate using interface 8 (refer Sec 1.2).

 Arrow-4 shows a local analytics service (ML pipeline 2) based on platform inputs.

 In the core cloud, an ML pipeline will have the core NFs as src. This may be used in

correlation with data from the edge (refer to [7]).

 Arrow-5 shows a local analtics service (ML pipeline 3) based on local inputs at the

core cloud and forwarded inputs from edge cloud 1 via arrow 2.

 In the edge cloud, an ML pipeline will have EdgeX platform service and its other services as

src. These may be used in correlation with the data from another edge (e.g. in the 3GPP

V2X use case or mobility case mentioned in [23]).

 Arrow-1 shows a “store and forward” of data collected at edge cloud 2 to edge cloud

1. This data is then analysed by ML pipeline 1.

 Collaborative interfaces Fig 5 would be realized using interface 8 (refer to Sec 1.2). This

helps in enriching the data available at any pipeline with side info from other instances.

 Arrow-3 shows a local analytics service (ML pipeline 1) based on local inputs and

forwarded inputs from edge cloud 2.

Fig 4: Management of ML Pipeline

Fig 5a and 5b shows specific examples of this instance:

Fig 5a shows Edge-platform-based ML prediction. It may include:

 Intelligent network traffic control technology Edge computing technology based on EdgeX

(Open source edge platform).

 Intelligent Traffic Analysis and ML-based prediction (eg. Deep learning, Reinforcement

learning)

 Hybrid intelligent network control approach combined by optimizing prediction and control

 Fig 5a shows: (arrow 1) Collecting data from sensor/device, (2) Stored data in

EdgeX core service. (3) Data preprocessing by EdgeX expert service, (4)

Transforming data-set to cloud for ML training in sandbox domain, (5) Model

serving with the trained model from ML prediction in EdgeX, (6,7) ML decision in

EdgeX platform.

Fig 5b shows real-time monitoring and control service based on edge computing. It may include:

 Intelligent IoE edge-based monitoring and control system for analyzing and processing real-

time sensor optimization

 ML-based intelligent IoE service and optimal control system using edge computing

 Intelligent real-time edge computing solution

 Fig 5b shows: (1) Real-time sensor/device data collecting by EdgeX device service via

broker, and also collecting and processing data following by ML-based module, (2)

Collecting and saving the data in DB (eg. MongoDB) via EdgeX core service, (3) Real-time

monitoring the stored sensor/device data from EdgeX-based monitoring client via EdgeX

Fig 5: EdgeX-based instance of ML pipeline

Fig 5a: Edge-platform-based ML prediction

expert service, (4) Optimizing real-time control to IoT sensor/device via EdgeX core

service.

Fig 6 below (see also [5]) shows a unique example where:

 In a Service based architecture, the ML pipeline is hosted in the NWDAF [1].

◦ ML pipeline 1 may have AMF as src (arrow 4) and PCF as sink (arrow 5) to realize a

particular use case (e.g. mobility based policy decisions).

 Resource constrained DU hosts part of the ML pipeline but not the training. The training is

done at the CU and the trained model is distributed to the DU, where it is hosted.

◦ DU hosts M2 which is updated from CU via arrow 3.

◦ Data for training the model in CU is provided via arrow 1.

 Collapsing of the interface between ML pipelines is an option as shown in the RDA option .

This brings out the need for flexibility in deployment. See ML-unify-012, ML-unify-015

and ML-unify-020.

◦ M1 and M2 are hosted in CUDA (CU Data Analytics) and DUDA (in ML pipeline 2 and

3 respectively) in the 3GPP split deployment, whereas they are collapsed (merged) in the

other 3GPP alternative deployment options [1].

 The extension of 3GPP interfaces for carrying information specific to ML pipeline execution

and training is a requirement here.

◦ Eg: (see [5]) RDA is primarily used to support optimization in the RAN. It also needs to

provide data subscription services for NWDAF and business & operation Support

System (OSS)/OSS/MANO, and

◦ upload pre-processed subscription data to NWDAF and BOSS/OSS (arrow 8) for further

big data operations and services.

◦ RDA can also subscribe to the NWDAF data analysis results for the RAN-side service

optimization (arrow 6).

Fig 5b:

Real-time monitoring and control service based on edge computing

Note: CUDA stands for CU Data Analytics.

In Fig. 7 below (see also [5]), we describe the mechanism of incorporating timing constraints of

various 3GPP use cases into their realization using ML pipeline. The timing constraints are captured

in Intents, which are in turn processed by MLFO to determine instantiation choices, like positioning

of various ML pipeline nodes. In Fig. 8, RAN use cases have strictest latency constraint (50us –

10ms). Therefore, the MLFO may choose to position the entire ML pipeline 2 in the RAN. In

contrast, use cases related to 5GC have 10ms-s latency budgets. Hence, the MLFO may choose to

enrich the data in ML pipeline 1 with side information from the RAN. The same is applicable to

ML

pipeline

3.

Fig 6: Hierarchical, distributed instances

Fig 7: Timing Constraints and Intents

Fig. 8 (see also [6]) shows a unique realization where NWDAF functions are hierarchical across three

domains: CN, AMF and RAN. This split allows certain specific data to be used for local decisions

at these NFs. From an ML pipeline perspective, this would mean that the pipelines are chained, so

that the output of one could feed into the input of another.

 Arrow 1, arrow 2, show the control of NS manager using the ML pipeline in NWDAF.

This enables use cases like dynamic Slice configuration using ML.

 Arrows 3,4, and 5,6 are local NWDAF functions in AMF and RAN respectively (e.g.

AMF can customize connection management, registration management, mobility

restriction management for UEs based on the long term UE MPP).

 Arrow 7 shows chaining, so that the output of a remote NWDAF can feed into the local

NWDAF as input (e.g. while performing short term MPP).

Fig. 9 shows the proposed architecture [24] to achieve closed loop automation in operation and

management on 5G networks.

 The management system should be automated to the extent possible to promptly react to

failures in the NFV. The operator wants to promptly discover such failures, which result in

increasingly unstable behavior before the process escalates into critical failure. Root cause

analysis is also important to properly convey relationship information between failure type

and location to automation function.

◦ Line 1 in Fig 9 shows the src – collector interface. Line 2 shows the Collector to ML

pipeline interface. Line 3 conveys the result of the ML pipeline (RCA or predictive

detection) to the policy function in the Automation function.

◦ NFVO is configured based on policy or workflows (line 4).

 Continuous improvement of the automated fault recovery process workflows is important.

◦ Line 6 provides the output corresponding to this improvement to the sink hosted in the

automation function.

 As mentioned in ML-unify-019, the ML pipeline is configured and monitored by MLFO via

Line 5.

Fig 8: Hierarchical Instances

Fig 10 shows ML Model executed on cloud server, when there is no severe timing requirement.

However use cases which require severe timing conditions are expected to be executed on edge part

using the outcome of ML executed on cloud server. There may be transfer of learning [25] or output

between the models in the two domains.

Fig 9: ML in closed loop automation

Fig 10: transfer of learning between domains

6 Key Architectural issues

 a) Need to standardise a ML-ML (Machine learning Meta Language)? Can we get feedback

from SG13 of ITU?

Description/Significance:

 ML-ML should be specified as a technology-agnostic, declarative specification language,

which can be used to specify how ML pipeline can be “composed” for a use case.

 E.g. NOP could specify using ML-ML that a new ML based use case needs to be introduced

– analysing alarms, RCA and predicting problem areas in the network – by deploying a new

src in the NMS subsystem, using a newly available model in a public repository, and direct

the output to a fault recovery module via a policy function. Such a specification (Intent)

could be agnostic of its underlying implementation in specific technology (e.g. 3GPP) by

various vendors.

 ML-ML is used to make declarative specification, from which flows the interpretation and

realisation of such a ML pipeline in, say 4G, 5G or any future networks, including simulated

networks in a standard, predictable, interoperable manner, with no surprises.

 SO (Service orchestration) mechanisms, implemented by different vendors, need to

understand the requirements specified in this format and control the steps in SO according to

this input.

 It is important to differentiate the language (ML-ML) from the specifications (Intent) written

in that language.

 This specification forms the mapping between ITU requirements and 3GPP, and other,

realizations of the use case (because of clear demarcation of use case specific nodes and ML

pipeline nodes in generic architecture).

Note: A possible realization of ML-ML may be using basic constructs in existing meta-languages

and MLFO may be realized as a function as part of NFVO. Such implementation details are beyond

the scope of the current study.

Current work and gaps:

 ETSI defines service orchestration. Network Service catalogs for E2E service description

with VNF and PNF descriptors and service graphs are specified.

 Container based orchestration platforms (eg. Kubernetes) has their own mechanisms for

service orchestration.

 Efforts are on to integrate these two, in ONAP.

 Current efforts are focussed on providing e2e service. Impact of introducing ML pipeline

on such service orchestration mechanisms should be studied. Reuse of existing

mechanisms should be maximised, but at the same time, gaps in integrating ML in a

descriptive fashion while orchestrating VNF, PNF and CNF should be studied.

 b) Study the level of capability exposure needed to enable dynamic ML based use cases in 5G

and future networks?

Description/Significance:

 Capability exposure and creation of ML based services in future networks are tightly

related to each other.

 ML use cases depends heavily on availability of data to analyse.

 Measurement data and context data has been identified in [2].

 Some of these data are standardised while others are not.

 Introduction of SBA (Service based Architecture) in 3GPP implies that a means of

obtaining these data is via services from MnS producers which expose such data. It can be

consumed by MnS consumers which use them for analytics.

 This may in turn be governed by EGMF (exposure governance management function) as

defined in 3GPP.

 Dynamic and rapid service creation can be achieved in future networks only by mapping

the capability exposure with service creation, discovery and chaining.

Current work and gaps:

 3GPP specifies [1] southbound interfaces between NEF (network exposure function) and

5GC Network Functions e.g. N29 interface between NEF and SMF, N30 interface between

NEF and PCF, etc.

 3GPP NFs expose capabilities and events to other NFs via NEF.

 eg. The AMF provides the UE mobility related event reporting to NF that has been

authorized to subscribe to the UE mobility event reporting service via NEF.

 But these are not dynamic, nor granular. Furthermore, Cloud native events need to be

supported along with discovery and chaining.

 In combination with create and deploy MnS dynamically, (3rd party or NOP internal,

dynamically), discovery, chaining and integration with NEF has to happen dynamically.

Requirements and mechanisms for these needs studying further.

 c) Study the requirements for “division of ML labour” between clouds? How is multi-level

ML interface realized? What is the ML interface between clouds? is it a NFVO-NFVO

interface?

Description/Significance:

 Multi-level interfaces are used in almost all use cases [3][4]

 Different orchestration abilities may be present in different clouds. eg. Edge clouds may

not have all orchestrator functions.

 When designing, developing, testing, deploying and managing ML workloads across such

multiple clouds, interface between them will be subjected to specific needs. eg. Design

time specification and runtime deployment of ML pipeline nodes across domains,

monitoring ML pipeline nodes, decision of where analytics is done (based on the capability

of the cloud, eg, a resource constrained edge node may not host training function, but it

may host the runtime model predictor). These are explained in great detail in [10].

 Requirements of ML functions on such cloud-cloud interface has to be studied to enable

smooth deployment of ML functions across clouds.

Current work and gaps:

 Many opensource forums are studying the implementation of generic cloud. eg. ONAP,

Akraino and openstack edge.

 In ETSI-NFV, IFA022 studies connectivity service instantiations between different

NFVI-PoPs for the Network Service Life Cycle Management. A Network Service, is

instantiated by the interactions among OSS/BSS, NFVO, WIM/VIM, and Network

Controllers. The current IFA022 analyses the interactions among OSS/BSS, NFVO,

WIM/VIM with reference to the current ETSI-NFV standards specifications.

 draft-bernardos-nfvrg-multidomain-05 analyzes the problem of multi-provider multi-

domain orchestration, by first scoping the problem, then looking into potential

architectural approaches, and finally describing the solutions being developed by the

European 5GEx and 5G-TRANSFORMER projects.

 None of these addresses the needs of MLFO [8]

 d) What is the relationship between ML pipeline nodes and 3GPP NFs? are the pipeline nodes

managed by 3GPP? are the connections between them managed by 3GPP?

Description/Significance:

 ML pipeline nodes are an overlay on top of 3GPP. They could be hosted on any 3GPP

NF by orchestration methods. They are managed by MLFO which in turn is managed by

NFVO. MLFO may use interfaces and coordination with 3GPP and non-3GPP to

manage the pipeline. (see sequence diagrams fig 9 and fig 10 of [8]).

 Further, ML pipeline acts as non-3GPP service, and interact with 3GPP NF using 3GPP

defined MnS. Requirements for Nodes in ML pipeline will be defined by ITU (and not

by 3GPP).

 ML pipeline exposes only Type A components towards 3GPP, because

operation/notification has to be produced/consumed towards 3GPP NF MnS. Type B

and C, even if exposed may be emulated (not real 3GPP NF).

 Interaction with legacy 3GPP Nfs needs to be studied using wrapper services. These

wrapper services expose interfaces towards ML pipeline using standard interfaces but

implement legacy or vendor-specific interfaces towards the NF. This aspect to provide a

smooth migration path to operators needs further study.

	References
	Abbreviations and Acronyms
	1. Terms defined in this document
	2. Terms defined elsewhere and used in this document
	▪ Need for an ML-ML (Machine learning Meta Language). This will provide interoperable, declarative mechanism to specify the “intent” of the use case which uses ML in 5G.
	▪ The level of capability exposure needed to enable dynamic ML based use cases in 5G and future networks. The characteristics of capabilities exposure mechanisms for future networks need to be studied, especially in the context of migrating existing n...
	4. High level requirements
	5. Unified Architecture
	5.1 Unified Logical Architecture
	5.2 Realization(s) of the logical architecture
	Fig. 8 (see also [6]) shows a unique realization where NWDAF functions are hierarchical across three domains: CN, AMF and RAN. This split allows certain specific data to be used for local decisions at these NFs. From an ML pipeline perspective, this ...
	Fig. 9 shows the proposed architecture [24] to achieve closed loop automation in operation and management on 5G networks.
	 The management system should be automated to the extent possible to promptly react to failures in the NFV. The operator wants to promptly discover such failures, which result in increasingly unstable behavior before the process escalates into critic...
	◦ Line 1 in Fig 9 shows the src – collector interface. Line 2 shows the Collector to ML pipeline interface. Line 3 conveys the result of the ML pipeline (RCA or predictive detection) to the policy function in the Automation function.
	6 Key Architectural issues
	a) Need to standardise a ML-ML (Machine learning Meta Language)? Can we get feedback from SG13 of ITU?
	b) Study the level of capability exposure needed to enable dynamic ML based use cases in 5G and future networks?

