

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Technical Specification
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(29 September 2022)

ITU-T Focus Group on Autonomous Networks

Technical Specification

Architecture framework for Autonomous
Networks

Summary

This document provides an architecture framework for Autonomous Networks. The scope of this

document includes:

- Requirements for the architecture

- Description of the architecture components and subsystems

- Description of the architecture

- Sequence diagrams explaining the interactions between the architecture components

Keywords

Architecture framework, autonomous networks, components, dynamic adaptation,

experimentation, exploratory evolution, requirements, sequence diagram

Contributors: Paul HARVEY

University of Glasgow

United Kingdom

Email: paul.harvey@glasgow.ac.uk

Leon WONG

Rakuten Mobile

Japan

Email: leon.wong@rakuten.com

Vishnu Ram

Independent Expert

India

Email: vishnu.n@ieee.org

Xi CAO

China Mobile

P.R. China

Email: caoxi@chinamobile.com

Xiaojia SONG

China Mobile

P.R. China

Email: songxiaojia@chinamobile.com

mailto:Paul.Harvey@glasgow.ac.uk
mailto:bahareh.sadeghi@intel.com
mailto:leon.wong@rakuten.com
mailto:vishnu.n@ieee.org
mailto:caoxi@chinamobile.com
mailto:songxiaojia@chinamobile.com

Table of contents

1 Scope ... 4

2 References ... 4

3 Definitions ... 4

3.1 Terms defined elsewhere ... 4

3.2 Terms defined in this document .. 4

4 Abbreviations and acronyms ... 6

5 Conventions ... 7

6 Introduction ... 8

7 Requirements for the architecture .. 9

8 Architecture Description .. 31

8.1 Description of Controller ... 31

8.2 Description of the Architecture Components .. 32

8.3 Description of Subsystems .. 38

8.4 Autonomy Engine .. 42

8.5 Description of Architecture ... 42

9 Sequence diagrams .. 44

Bibliography ... 52

Technical Specification

Architecture Framework for Autonomous Networks

1. Scope

This document provides an architecture framework for Autonomous Networks. The scope of this

document includes:

- Requirements for the architecture

- Description of the architecture components and subsystems

- Description of the architecture

- Sequence diagrams showing the interactions between the architecture components

2. References

[ITU-T Y.Supp 71] ITU-T Supplement 71 to ITU-T Y-3000 series Recommendations, “Use

cases for Autonomous Networks” https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en

[ITU-T Y.3172] ITU-T Recommendation Y.3172, “Architectural framework for machine

learning in future networks including IMT-2020”
[ITU-T Y.3177] ITU-T Recommendation Y.3177, “Architectural framework for artificial

intelligence-based network automation and fault management in future networks including IMT-

2020”

[ITU-T Y.3320] ITU-T Recommendation Y.3320, “Global information infrastructure,

internet protocol aspects and next-generation networks”

[ITU-T Y.3525] ITU-T Recommendation Y.3525, “Cloud computing – Requirements for

cloud service development and operation management”

3. Definitions

3.1. Terms defined elsewhere

This document uses the following terms defined elsewhere:

3.1.1. Knowledge [b-ETSI GS ENI 005]: analysis of data and information, resulting in

an understanding of what the data and information mean.

NOTE - Knowledge represents a set of patterns that are used to explain, as well as

predict, what has happened, is happening, or is possible to happen in the future; it is

based on acquisition of data, information, and skills through experience and

education.

3.2. Terms defined in this document

This document defines the following terms:

https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en

3.2.1. Adaptation Controller: A controller responsible for selecting candidate

controllers from a set of generated controller configurations which are ready for

integration, executes the integration to the underlay.

NOTE - Adaptation controller has two parts: Curation controller (responsible for selection

and maintenance of the controllers within the curated controller lists from the evolvable

controllers) and Selection Controller (responsible for the selection of a services’

operational controller from the curated controller lists).

3.2.2. AN Sandbox: An environment in which controllers can be deployed,

experimentally validated with the help of (domain specific) models of underlays, and

their effects upon an underlay evaluated, without affecting the underlay.

NOTE 1- AN Sandbox generates reports regarding the experimental validation of

controllers. These reports are collated by the Experimentation controller and the

Knowledge Base is updated.

NOTE 2- The domain specific models of underlays are generated using inputs from

underlays. These inputs are used in configuring simulators in AN Sandbox. For example

the packets per second to be used to simulate a real world scenario. In addition, AN

Sandbox simulates scenarios which are rarely or never seen in underlays. For example a

burst of traffic which rarely occurs in real network.

3.2.3. Autonomy Engine: A collection of subsystems where trial and error process is

applied on controllers to generate new candidate controllers and validate them.

NOTE – For example, the grouping of the evolutionary exploration subsystem and the

real-time responsive online experimentation subsystem together forms Autonomy Engine.

3.2.4. Controller: a controller is a workflow, open loop or closed loop [ITU-T Y.3115]

composed of modules, integrated in a specific sequence, using interfaces exposed by

the modules, which can be developed independently of the system under control

before integration into the system under control, to solve a specific problem or satisfy

a given requirement.

NOTE 1- examples of system under control are managed entities, workflows and/or

processes in an IMT-2020 network.

NOTE 2 – Exploratory evolution and real-time responsive online experimentation are

examples of processes in independent development of modules or closed loops

NOTE 3 – Modules may themselves be workflows, open loops, or closed loops

3.2.5. Controller Design: A low-level, non-executable representation of controller

containing modules, their configurations, and their parameter values which is used to

instantiate a controller.

3.2.6. Controller Specification: A high-level, non-executable representation of a

Controller with the metadata corresponding to necessary functionality of the

controller and a utility function to be achieved.

3.2.7. Evolution Controller: A controller responsible for evolution of controllers by

manipulating the module instance used within a controller, the structure or topology

of connections between modules in a controller and/or the values chosen for the

module(s) parameters.

3.2.8. Experimentation Controller: A controller which generates potential scenarios

of experimentations based on controller specifications and additional information as

provided by the knowledge base, executes the scenarios in the AN Sandbox, collates

and validates the results of the experimentation.

3.2.9. Knowledge base: A subsystem which manages storage, querying, export, import

and optimization and update knowledge, including that derived from different sources

including structured or unstructured data from various components or other

subsystems.

NOTE 1- Knowledge includes metadata which is derived from the capabilities, status of

AN components. This knowledge is stored and exchanged as part of interactions of AN

components with knowledge base. Knowledge can be derived from different sources

including structured or unstructured data from various actors involved in a use case and/or

various experiments in AN Sandbox.

NOTE 2 – managing knowledge includes storing, querying, export, import and optimize

the knowledge. AN workflows, including exchange of knowledge between AN

components, may in turn result in update of knowledge base.

NOTE 3 – Uses of knowledge stored in knowledge base by other components include to

facilitate the deployment and management of controllers in underlays, and selection and

optimization of experimentation strategies in the experimentation stage.

3.2.10. Managed Entity: A resource, service, closed loop, or controller which is

managed

NOTE - This term differs from other definitions [b-ETSI GS ZSM 009-1, b-Huebscher

2008] as a controller may also be managed, similarly to closed-loops, managed resources

e.g. VNFs, PNFs) and managed services (e.g. cloud services).

4. Abbreviations and acronyms

This document uses the following abbreviations and acronyms:

AI Artificial Intelligence

AN Autonomous Networks

API Application Programming Interface

AR Augmented Reality

CDN Content Distribution Network

CI/CD Continuous Integration and Continuous Delivery

CL Closed loop

CN Core Network

DNN Deep Neural Network

DNS Domain Name Service

E2E End to End

FPGA Field Programmable Gate Array

KB Knowledge Base

KPI Key Performance Indicator

MANO Management and Orchestration

MEC Multi access Edge Computing

ML Machine Learning

NF Network Function

NFV Network Function virtualisation

ONAP Open Networking Automation Platform

OSM Open Source Management and Orchestration

PNF Physical Network Function

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RIC RAN Intelligence Controller

RCA Root Cause Analysis

SDK Software Development Kit

TOSCA Topology and Orchestration Specification for Cloud Applications

UE User Equipment

VNF Virtualized Network Function

VR Virtual Reality

YAML Yet Another Meta Language

ZSM Zero Touch Service Management

5. Conventions

In this Technical Specification:

The keywords "is required to" indicate a requirement which must be strictly followed and from

which no deviation is permitted, if conformance to this Technical Specification is to be claimed.

The keywords "is recommended" indicate a requirement which is recommended but which is not

absolutely required. Thus, this requirement need not be present to claim conformance.

The keywords "can optionally" indicate an optional requirement which is permissible, without

implying any sense of being recommended. This term is not intended to imply that the vendor's

implementation must provide the option, and the feature can be optionally enabled by the network

operator/service provider. Rather, it means the vendor may optionally provide the feature and still

claim conformance with this Technical Specification.

6. Introduction

With the strong progression of digital transformation in telecommunication networks enabling the

practical and industrial realisation of software mechanisms to manage the network [b-WEF-DTI],

recent focus has turned towards the processes of control that will drive these mechanisms.

The ultimate form of such control is known as autonomous networks. These are networks that

possess the capabilities to monitor, operate, recover, heal, protect, optimize, and reconfigure

themselves; these are commonly known as the self-* properties [b-Kephart 2003]. Indeed, the

interest in autonomous networks is currently so strong that 3GPP [b-3GPP TR 28.810], ETSI [b-

ETSI-GS-ENI-002, b-ETSI-AN], TMForum [b-TMFORUM-AN-WP], and the IRTF [b-NMRG]

all have historic or ongoing initiatives under the heading of autonomy.

Many of these efforts manifest themselves in the application of various machine learning (ML)

approaches to a single or a set of targeted use cases with the aim of automating the operation or

management, reducing cost, optimising the resources used, or automatically detecting or

predicting unusual situations or circumstances.

One common problem in the application of ML to these use cases is the problem of model drift.

Model drift is the phenomena whereby either the goal of the ML model changes overtime

(conceptual drift) or when the available data no longer enables the model to form the same

relationships (data drift). This problem can be seen most obviously in financial markets, where

market predictions must be frequently revisited to address the reality that the operating

environment (the market) has changed compared to when the model was made. Several tools and

frameworks have been proposed to help address these issues [b-capacity-allocation , b-evolution ,

b-bayesian-radio, b-RL, b-AUTOML, b-AUTOML-ZERO].

The reality is that ML is one enabling technology amongst many that are required to achieve the

autonomous operation of the network: new software and hardware technology is created, updated,

deprecated [b-Acumos-DCAE]; new services are introduced to the network and new ways of

using the networks are emerging all the time [b-NGMN-5G]; definitions change – what is good

today is not necessarily good tomorrow.

As the operational environment and context of our networks change, so too must the processes of

control that we use to operate them.

Closed-loop (CL) software control has become a de facto standard in the approach taken to the

automatic operation of the network. There are a range of different CL approaches in different

domains: efficient and simple, strategic, tactical, centralised, distributed, intelligent, adaptative,

hierarchical [b-Rossi 2020, b-ITU-JFET].

Irrespective of the grouping or purpose, the logical concept of a CL [b-Kephart 2003, b-OODA] is

a self-contained entity with the ability to operate or monitor one or more managed entities. In this

context, a CL suffers the same limitation of being bound by the purpose for which it was designed,

even in the cases when that purpose includes some dynamic reflective capabilities.

The conclusion of the above is that no matter the domain of operation, technology, algorithm,

intelligence, or data set used, an autonomous network will require the ability to adapt beyond pre-

defined operational bounds not only in logic deployed to operate and manage of the network but

also in the process that it uses to generate such deployable logic, so called “design-time

procedures” [ITU Y.3177].

The key purpose and goal of the architecture is to support the continuous evolutionary-driven

creation, validation, and application of a set of controllers to a network and its services such that

the network and its services may become autonomous.

In this way, the traditional autonomic self-* principles [b-Kephart 2003] are attributed to the

controllers which are applied to the network and its services. The responsibility for adaptation of

controllers themselves over time is the responsibility of this architecture1. This partition of

concerns enables the complimentary efforts in standards and research for CL, ML, as well as the

general area of network management in the pursuit of autonomous networks and directly

addresses need for automatic “design-time procedures” [ITU-T Y.3177].

The main concepts behind autonomous networks which are elaborated here are exploratory

evolution, real-time responsive online experimentation and dynamic adaptation. To study and

analyse use cases along these concepts in networks, a basic building block called “controller” is

introduced. Controllers are used in the use cases to further elaborate autonomous networks and the

key concepts required to enable them.

The concept of exploratory evolution introduces the mechanisms and processes of exploration and

evolution to adapt a controller in response to changes in the underlay network. These processes

generate new controllers or update (evolve) existing controllers to respond to such changes and

solve the situation or task at hand more appropriately.

The continuous process, based on monitoring and optimization of deployed controllers in the

underlay network, is called real-time responsive online experimentation.

Dynamic adaptation is the final concept in equipping the network with autonomy and the ability to

handle new and hitherto unseen changes in network scenarios.

With consideration of the above concepts, an autonomous network is a network which can

generate, adapt, and integrate controllers at run-time using network-specific information and can

realize exploratory evolution, real-time responsive online experimentation and dynamic

adaptation.

NOTE - real-time responsive online experimentation is called “experimentation” in this document.

7. Requirements for the architecture

This clause describes the requirements for the architecture framework.

NOTE 1- See appendix I for a mapping of these requirements to the components in clause 8 and

use cases in [ITU-T Y.Supp 71].

Requirement
Description

AN-arch-req-001
It is required that AN parses, validates and translates an

abstracted use case description, with high level objectives of

a controller (use case) into a controller description.

NOTE 2 – the abstracted use case description may be hand-crafted as unstructured text or derived

from “software modules specifications”

NOTE 3 – Controller description may use structured languages formats e.g. TOSCA and may

have a structure which facilitates downstream exploration, experimentation, and adaptation.

NOTE 4– controller description may use/enable properties derived from various domains in the

network e.g. properties to describe physical layer, network layer and application layer use cases.

NOTE 5– examples of use cases are

(a) root cause analysis and diagnosis of network elements based on real time analysis of data .

(b) Intelligent energy saving solution based on automatic data acquisition, AI-based energy consumption

modelling and inference, facilities parameters control policies decision, facilities adjustment actions

implementation, energy saving result evaluation and control policies continuous optimization.

(c) optimal adjustment of antenna parameters with AI capabilities of multi-dimensional analysis and

prediction.

(d) management of industry vertical applications and related services in the network.

Requirement Description

AN-arch-req-002
it is required that AN validates and processes the controller

description, so that exploratory evolution can be applied on

the controller descriptions.

NOTE 6 – exploratory evolution may include the following: interconnecting of descriptions

together to form complex controller descriptions.

NOTE 7 – exploratory evolution may result in a list of evolvable controllers

NOTE 8 – exploratory evolution may be a continuous process.

Requirement Description

AN-arch-req-003
it is required that AN manages knowledge related to

autonomous networks

NOTE 9 – managing knowledge includes storing, querying, export, import and optimize the

knowledge.

AN-arch-req-004 it is required that AN enables integration and/or plugin of

various algorithms including 3rd party provided algorithms,

machine learning or artificial intelligence models, into

controllers.

AN-arch-req-005 It is optional that AN generates and/or updates the

controller description.

AN-arch-req-011
It is required that AN enables update of knowledge based

on various procedures in the AN.

AN-arch-req-006 It is required that AN generate the potential scenarios of

evolution, taking the controller description as input.

NOTE 10- specific mechanisms or algorithms used for evolution may be out of scope of this

document.

AN-arch-req-007 it is required that AN executes the potential scenarios of

evolution, taking the controller description as input and

collates the output in the form of evolvable controller

descriptions.

NOTE 11- several epochs of evolutions may be applied on the same set of controller descriptions.

AN-arch-req-008 it is required that AN generate the potential scenarios of

experimentation, taking the controller description as input.

NOTE 12- specific configurations and “limits” of experiments may be specified in the “metadata”

and “constraints” related to the controller description.

NOTE 13- specific mechanisms for arriving at the scenarios for experimentation may use AI/ML

or other forms of analytics and are out of scope of this document.

AN-arch-req-009 It is required that AN executes the experimentation,

collates and validates the results of the experimentation,

considering the metadata and constraints and

corresponding controller descriptions.

NOTE 14- experimentation may have several phases for example, simulation driven, testbed

driven or canary test driven. The phases of experimentation may be configurable and automated,

for example, as per a workflow.

NOTE 15- the specific success/failure criteria for the experiments may be out of scope of this

document, however, an acceptable format for representing such metadata and constraints related

to potential success/failure as related to a use case may be studied.

AN-arch-req-010 It is required that AN enables integration of various forms of

testing components including simulator and data generators,

including those provided by third party providers.

AN-arch-req-012
it is required that AN generate the potential configurations for

integration of controllers to specific underlays.

NOTE 16– configurations may include reference points, API formats, data models, etc. This

generation of configurations may take the controller description as input along with the

description or metadata related to the underlays.

NOTE 17– while the specific configurations for integration of controllers for specific use cases

may be out of scope of this document, an acceptable format for representing such configurations

may be studied.

NOTE 18- example of underlays are edge networks, core networks, management plane, CI/CD

pipelines, etc.

AN-arch-req-013 it is required that, before integration of controllers into

underlays, AN “just in time” verifies that the evolution (applied

so far to the controller) has not made it incompatible for

integration with the underlay.

AN-arch-req-014
it is required that AN selects the candidate controllers from a

set of controllers which are ready for integration and executes

the integration of controllers to specific underlays, taking as

input the generated configurations for integration.

NOTE 19– the specific criteria for selecting the controllers for integration may be out of scope of

this document, however an accepted format for representing such criteria may be studied.

NOTE 20 – the specific mechanisms used for integration of controllers to underlays are out of

scope. Examples of such mechanisms are service based architectures [b-ETSI TS 129 500] and

continuous integration mechanisms [ITU-T Y.3525].

NOTE 21 – Example of ways of integration of controllers to specific underlays are (a)

autonomous network components act as a ZSM service consumer to achieve some AN use cases

or (b) mapping of AN components to ZSM subsystems. Or (c) add new components to ZSM

subsystems to achieve AN use cases. (d) ZSM acts as an underlay, AN components act upon ZSM

subsystems.

NOTE 22 – examples of specific underlays are various domains in the network.

AN-arch-req-015 it is required that AN manages the points of

exchange of metadata in the AN workflow,

with a peer entity.

NOTE 23 – examples of metadata regarding the workflow include current capabilities, status and

context of the AN components, including knowledge base, controllers, orchestrators, simulators,

etc. Managing may include identifying actors and points in the workflow during the AN, to

capture metadata regarding the workflow which can then be exchanged.

NOTE 24 - Examples of points of exchange of metadata in the AN workflow are different stages

of experimentation, adaptation.

NOTE 25 - the format of exchange is out of scope of this document.

NOTE 26 – examples of workflow during the AN include generation of the potential scenarios of

experimentation and the generation of potential scenarios of evolution.

NOTE 27 - Peers may include humans and machines

AN-arch-req-016 it is required that AN, based on the exchange of

metadata in the AN workflow, with a peer

entity, integrate the impacts of such exchanges,

into the AN.

NOTE 28 – examples of impacts of the exchange of metadata are update of knowledge base and

selection of API versions to use for adaptation.

AN-arch-req-017 it is required that AN manages the lifecycle of

controllers.

NOTE 29 - Examples of managing the lifecycle of controllers include creating a configuration for

the controller (based on the capabilities of the underlay), creating an instance of the controller in

the underlay, monitoring the execution of the controller in the underlay and subsequent

optimization of the controllers or related parameters.

NOTE 30 – Examples of subsequent optimization are recommendations on new AI/ML analysis

techniques, data collection techniques, evolution to move up the intelligence level [ITU-T

Y.3173].

AN-arch-req-018 it is required that AN decides new

opportunities for deployment of controllers in

underlays.

AN-arch-req-019
it is required that AN decides configuration of

controllers which are to be deployed in

underlays.

AN-arch-req-020
it is required that AN enables monitoring of

controllers which are already deployed in

underlays.

AN-arch-req-021
it is required that AN enables reporting and

monitoring of AN components and procedures

by humans and/or other automation

mechanisms.

AN-arch-req-022
it is required that AN utilizes supporting

components like stored controllers and

knowledge in the AN to deploy and manage

controllers in underlays.

AN-arch-req-056
it is required that AN discovers deployed

controllers in the underlay, including those

deployed by third party providers.

AN-arch-req-0xx
 It is required that AN discovers and consumes

services provided by service management

frameworks.

NOTE 31 - Examples of service management

frameworks are ONAP, OSM.

AN-arch-req-0xx
 It is optional that AN influence the services

provided by service management frameworks.

NOTE 32 - Examples of influence affected by

AN upon services provided by service

management frameworks are passing policies

and intents to service management frameworks.

Service management frameworks may use it to

design, deploy new and/or modified services

AN-arch-req-023
it is required that AN optimizes the controllers.

NOTE 33 – Examples of optimization of controllers are optimization of adaptation mechanisms

like data collection, data quality and frequency. Other examples are optimization of closed loop

implementations like Root Cause Analysis (RCA) mechanisms and recommendations on better

algorithms for achieving the same. Other examples are formation or evolution of new controllers

to address new or unforeseen problems in the network.

AN-arch-req-24 it is required that AN discovers the interfaces

with underlays used for integration.

NOTE 34- interfaces with underlays may use specific APIs for e.g. APIs for data collection,

configuration of underlay functions etc. Discovery of interfaces may include API metadata

including parameters, versions, range of parameters etc.

AN-arch-req-25 it is required that, for a given use case, AN

discovers the underlay specific parameters

open for optimization, data points for collection

in the underlay and the relevant KPIs for

tracking.

NOTE- for example in edge deployments,

underlays may use MEC (multi access edge

computing) APIs.

AN-arch-req-26
it is required that AN discovers the

characteristics of controllers which are relevant

for enabling evolution.

NOTE 35 - examples of characteristics of controllers which are relevant for evolution are

capabilities exposed by the controllers and requirements to be satisfied for the controllers.

AN-arch-req-27 it is required that AN recommends modules

which can satisfy the characteristics of

controllers.

NOTE 36 - controllers may be composed of one or many modules.

AN-arch-req-028 it is required that AN enables the management

of lifecycle of controllers based on output of

controllers.

NOTE 37 – Examples are management of lifecycle of controllers in a lower domain (such as

RAN), by controllers in a higher domain (e.g. CN), creation and optimal positioning of controllers

in the RAN by controllers in a higher domain, evolution, experimentation, deployment, of

controllers.

NOTE 38 – Complex AN behaviours may be achieved by using such cross-domain “chaining” of

controllers.

AN-arch-req-29 it is required that AN enables integration of

controllers from different domains to achieve

complex use case

NOTE 39 - for example, AN may integrate controllers in different domains and levels of the

network, like RAN and Core network domains.

AN-arch-req-030 it is required that AN enables the storage and

management of supporting artifacts for the

lifecycle management of controllers.

NOTE 40 – Examples of supporting artifacts are knowledge, AI/ML or other types of models,

workflow representations, policies which need to be applied while managing the lifecycle of

controllers, etc.

NOTE 41 – examples of management of supporting artifacts are storage of knowledge in

knowledge base, create, modify, delete, storage of AI/ML models in ML model repository [ITU-T

Y.3176] and policies, query, discovery of various artifacts, etc.

AN-arch-req-031 it is required that AN customizes the

integration of controllers in underlays,

considering the integration options exposed by

the underlay.

NOTE 42 – examples of integration options are interfaces, parameters and configurations exposed

by the underlay. Examples of underlays are industry vertical applications and networks.

AN-arch-req-032 it is required that AN automates and abstracts

the evolution of underlay network services,

from overlay service providers.

NOTE 43 – examples of evolution of underlay network services include updates to support new

features, migration to new service platforms and technologies.

NOTE 44 – service provider may monitor the evolution (see AN-UC03-REQ-001-Component-

req-00a above) but does not manually execute the evolution of underlay network services.

AN-arch-req-033 it is required that AN utilizes the declarative

specification of use case while deciding the

design, deployment and management of

controllers.

AN-arch-req-034 it is required that AN utilizes the declarative

specification of use case to capture both use

case requirements from vertical applications

and deployment requirements from underlays.

AN-arch-req-035 it is required that AN automates and abstracts

the experimentation of underlay network

services, from overlay service providers.

AN-arch-req-036
It is required that AN chooses the compatible

set of interfaces to integrate with underlay

network services.

NOTE 45 - e.g. interfaces may be used to

monitor the services and controllers in the

underlay networks.

AN-arch-req-037
It is required that AN produces human and

machine readable reports of periodic or

aperiodic nature.

AN-arch-req-038
It is required that AN discovers service

automation frameworks used by underlays.

NOTE 46 - this may help in managing and

automating the lifecycle of underlay services

by the AN.

AN-arch-req-39
It is required that AN consumes services

exposed by service automation frameworks

used by underlays.

NOTE 47 - Services exposed by service

automation frameworks include configuration,

lifecycle management and customizations.

NOTE 48 - examples of service management

frameworks include ETSI ZSM framework.

AN-arch-req-040
It is required that AN adapts to evolution of

underlay network services, which may be done

independently to the evolution of AN.

NOTE 49 - e.g. the evolution of underlay

network services may be managed by different

entity than the one managing the evolution of

AN.

AN-arch-req-041
It is required that AN creates and/or

recommends candidate designs for potential

network services and interfaces in the underlay,

which may possibly satisfy new use cases.

NOTE 50 – this (design creation) may also be

in response to an observed fault in the

underlay.

AN-arch-req-042
In an end to end service delivery deployment, it

is required that AN integrates with evolution of

various generations of connectivity options

between various subsystems of the underlay.

NOTE 51 - e.g. access network may be using

various different types of technologies and they

may evolve over a period of time.

AN-arch-req-043
It is required that AN utilizes heterogenous

connectivity options provided by the underlay

to deploy and integrate controllers in different

levels of the underlay.

AN-arch-req-044
It is required that AN considers the use case

specific requirements (including operator

preferences) while deciding the operator

preference for design, deployment,

management of controllers, including

connectivity options between various domains.

NOTE 52 - for example in rural areas, end-

users may have usage patterns characteristic to

certain applications (e.g. low mobility, high

bandwidth). Choice of last mile connectivity

options may be influenced by such preferences.

AN-arch-req-045
It is required that AN monitors the changes to

connectivity provided by the underlay between

controllers deployed in various domains.

NOTE 53 – thus, inter-domain connectivity

which connects various controllers, forms

another underlay for AN.

AN-arch-req-046
It is required that AN enables evolution of

inter-domain connectivity which connects

controllers in various domains of the underlay.

AN-arch-req-047
It is required that AN adapts to the evolution of

vertical applications at run time.

NOTE 54 - e.g. of adapting to evolution of

vertical applications at run time is onboarding

new applications or changes in existing

applications deployed by service providers in

the network.

AN-arch-req-048
It is required that AN adapts to changes in the

external systems that it interfaces with.

NOTE 55 - examples of external systems are

various management and orchestration systems,

policies and corresponding management

systems, workflow management systems, user

management systems, which may be deployed

from multiple vendors by the operator.

AN-arch-req-049
It is required that AN exposes single point of

monitoring and managing AN functionality

deployed by the operator.

AN-arch-req-050
It is required that AN monitors the dynamic

changes in capabilities of monitoring,

configuration and analysis of parameters from

underlay networks.

NOTE 56 - based on the independent evolution

of controllers and the underlay and the

applications deployed by verticals, mechanisms

such as discovery, publishing, subscription

mechanisms may be used to provide flexibility

in monitoring parameters.

AN-arch-req-051
It is required that AN utilizes the dynamic

changes in capabilities of monitoring,

configuration and analysis of parameters from

underlay networks.

AN-arch-req-052
It is required that AN recommends changes in

capabilities of monitoring, configuration and

analysis of parameters from underlay networks.

AN-arch-req-053
It is required that AN discovers the changes to

network functions in the underlay and includes

those changed functions while providing the

AN functionalities like evolution.

NOTE 57 - this enables plug and play of new

NFs in the underlay.

AN-arch-req-054
It is required that AN provides inputs to

external systems regarding potential scenarios

and requirements.

NOTE 58 - examples of potential inputs are

reports generated from AN on new use case

scenarios, experimentation scenarios.

AN-arch-req-055
It is optional that AN recommends new

capabilities and requirements of NF in

underlays.

AN-arch-req-057
it is required that AN enables deployment of

controllers which utilizes both simulated and

real networks as underlays.

NOTE 59 – in case of controllers which span

across network domains, this may involve

some modules of the controller integrated with

simulated underlays.

AN-arch-req-058
it is required that AN enables analysis and

correlation of domain specific, unstructured

data in natural languages from the underlays

NOTE 60 – examples of domain specific

unstructured data in natural languages are logs

from NFs.

NOTE 61 - advances in analysis of natural

language text may be exploited from third party

models and repositories.

AN-arch-req-059
it is required that AN derives knowledge from

analysis and correlation of domain specific,

unstructured data in natural languages from the

underlays

AN-arch-req-060
it is optional that AN enables correlation of

declarative specification of network services

with that of controllers.

NOTE 62 - examples of correlation of

specifications of controllers with that of

network services include mapping of interfaces,

capabilities and requirements. Other examples

are identifying opportunities for deriving

detailed specifications. E.g. using substitution

mechanisms in TOSCA.

AN-arch-req-060
it is optional that AN enables correlation of

declarative specification of network services

with that of controllers and use that correlation

to integrate controllers at different levels of the

network.

NOTE 63 - examples of correlation of

specifications of controllers with that of

network services include mapping of interfaces,

capabilities and requirements. Other examples

are identifying opportunities for deriving

detailed specifications. E.g. using substitution

mechanisms in TOSCA.

NOTE 64 - examples of different levels of the

network are RAN, Core Network.

AN-arch-req-061
it is required that AN supports import and

export of controller specifications at various

stages of their management.

NOTE 65 - examples of various stages of

management of controller specifications are

before and after exploratory evolution.

AN-arch-req-062
 It is required that AN supports flexible

learning of derivations of metrics from

collected parameters/measurements.

NOTE 66 – derivation of metrics may use

AI/ML techniques. Derivation

mechanisms/algorithms may change over a

period of time or events. In such cases,

mechanisms such as re-training may be applied

to update the derivation models.

AN-arch-req-062
It is required that AN supports integration of

third party provided derivation mechanisms for

metrics from collected

parameters/measurements.

NOTE 67 - example of metrics derived are

QoE, example of measurements collected are

QoS parameters.

AN-arch-req-063
It is required that AN supports capturing both

high level service KPI requirements as well as

deployment preferences and considerations in

the intent.

AN-arch-req-064
It is required that AN supports derivation of

requirements for service life cycle management

in underlays based on the intent derived from

different levels in the network.

NOTE 68 - for example, closed loops for

optimization in RAN may be configured based

on derived intents from the CN.

NOTE 69 - service life cycle management

includes resource allocation, scaling,

optimization etc.

AN-arch-req-065
It is required that AN supports optimization of

intents based on monitoring the performance of

derived closed loops deployed in various levels

of the network and their life cycles.

NOTE 70 - for example, derivation of intents in

the CN may be optimized based on the

feedback obtained from monitoring the

(derived) closed loops deployed in the RAN.

AN-arch-req-066
 It is required that AN utilizes the application

development pipelines to automate the design

and instantiation of underlay network services.

NOTE 71- for example, platforms such as k8s,

MEC or O-RAN may expose SDKs or APIs for

automation of design, deployment of network

services.

AN-arch-req-067
 It is required that AN utilizes the application

development pipelines to automate the design

and/or instantiation of closed loops in various

levels of the network.

NOTE 72 - for example, platforms such as

ONF, O-RAN and ONAP allows design and

deployment of xApps and AI/ML models

respectively. In some cases, 3rd party

respositories may be accessed to select and

deploy xApps and/or AI/ML models.

AN-arch-req-068
 It is required that AN discovers the topology

and connectivity/split options and capabilities

in the underlay architecture and considers such

options while integrating controllers in

underlays

NOTE 73 - for example, 3GPP networks may

have various architecture split options.

AN-arch-req-069
It is required that AN integrates intelligent

controllers at various levels of the underlay.

NOTE 74 - examples of intelligent controllers

are those integrating AI/ML models.

AN-arch-req-070
It is required that AN enables integration of

controllers to network management and

application management at various levels of the

underlay.

NOTE 75 - examples of functionality of such

controllers are placement of functions, choice

of architecture splits.

AN-arch-req-071
It is required that AN enables designing,

developing and deploying applications at various

levels of the underlay.

NOTE 76 - for example, in coordination with

the edge network orchestrator, AN may provide

a design for vertical applications to be

deployed at a specific edge location.

NOTE 77 - design and development of

applications may be achieved in coordination

with CI/CD pipelines.

AN-arch-req-072
It is required that AN monitors the feedback

from controllers deployed at various levels of

the network to optimize the design and

development and deployment of controllers.

NOTE 78 - for example, in coordination with

the edge network orchestrator, AN may

optimize the existing design for vertical

applications to be deployed at a specific edge

location.

AN-arch-req-073
 It is required that AN creates strategies for

experimentation for testing and validation of

controllers in sandbox environment.

AN-arch-req-074
 It is required that AN deploys, tests and

validates controllers in sandbox environment.

AN-arch-req-075
 It is required that AN analyses the results from

experiments in sandbox environment and uses

those results to update the knowledge base,

optimize deployed controllers in underlays as

well as optimize the experimentation strategies

in sandbox.

NOTE 79 - example of optimization include

selection of new controllers or modules.

Example of optimization of experimentation

strategies are selection of new test scenarios.

AN-arch-req-076
 It is required that AN captures the domain

specificities differently from design of a

potential controller to be deployed in that

domain.

NOTE 80 - Examples of domain are

administrative domains in the underlays like

edge network, RAN, CN.

NOTE 81 - examples of domain specificities

are latency criteria, location information, data

privacy requirements, etc.

NOTE 82 - example of capturing domain

specificities are TOSCA service definitions.

Design of controllers may also be represented

using such declarative definitions.

AN-arch-req-077
It is required that AN captures service

specificities.

NOTE 83 - examples of service specificities

include service level requirements for QoS.

AN-arch-req-078
It is required that AN enables discovery of

service level tradeoffs.

NOTE 84 - examples of service level tradeoffs

are greater accuracy of inference provided

larger resource for training of AI/ML models.

AN-arch-req-079
It is required that AN triggers re-design of

network services based on monitoring of

network services in underlays

AN-arch-req-080
It is required that AN triggers evolution of

network services based on monitoring of

network services lifecycle in underlays

AN-arch-req-081
It is required that AN enables run-time

discovery of new use cases for optimization in

underlays.

AN-arch-req-082
It is required that AN supports usage of various

types of controllers for problem discovery in

various levels of the underlay.

NOTE 85 - for example, data collection agents

may be designed separately from the analysis.

Data collection agents may be deployed in the

edge network whereas analysis may be

performed at the core cloud.

AN-arch-req-083
It is required that AN supports usage of various

types of controllers for problem isolation in

various levels of the underlay.

NOTE 86 - for example, collaborative

communication between controllers may be

used to isolate the problem.

AN-arch-req-084
It is required that AN supports design and/or

selection of controllers based on the problem

isolated in the underlay.

NOTE 87 - for example, 3rd party controllers

from repositories may be selected to address

the problem.

AN-arch-req-085
It is required that AN supports deployment of

new controllers with new capabilities to

address the problems detected in the underlay.

AN-arch-req-086
It is required that AN supports adaptive design

of controllers using hardware adaptation

techniques such as detection of hardware

capabilities and adaptive design.

NOTE 88 - for example optimization of AI/ML

models to FPGA architectures. Adaptive design

may involve considerations of design tradeoffs

such as energy efficiency, accuracy, etc.

AN-arch-req-087
It is required that AN supports feedback and

optimization of hardware adaption process for

controllers.

NOTE 89 - for example, the hardware

adaptation process for controllers may involve

(1) translation of high level description to a

intermediate representation amenable to

optimization, (2) optimization considering the

design tradeoffs (3) hardware implementation

and integration. The translation and

optimization steps above may themselves be

tuned based on monitoring and feedback from

the controllers integrated in the hardware.

AN-arch-req-088
It is required that AN uses inputs from external

environment and user specific models to design

as well as apply controller outputs to underlays.

NOTE 90 - example of inputs from external

environments is mobility prediction models for

users with assistive needs or groups of users.

User preferences or capabilities are examples

of user specific models.

AN-arch-req-089
It is required that AN uses user preferences or

user specific models while designing as well as.

applying controller outputs to underlays.

NOTE 91 - standard representations of user

profiles or preferences or user models with

assistive needs are examples of user

preferences.

AN-arch-req-090
It is required that AN experiments to generate

changes to user specific models which may

help ease of experience for users in hitherto

unforeseen circumstances

NOTE 92 - AN experiments may be done in a

sandbox using simulators.

AN-arch-req-091
It is required that AN enables transfer of user

specific models to other domains in the

underlay.

NOTE 93 - this may help in update of models

in other domains, update of simulators. etc

AN-arch-req-092
 It is required that AN provides evolution of

controllers as a service to underlays.

NOTE 94 - underlays may have different types

of controllers deployed including from 3rd

parties. AN discovers the characteristics of

different types of controllers and provides

evolution as a service which results in evolved

controller candidates for deployment in the

underlays.

AN-arch-req-093
 It is required that AN discovers and utilizes the

services provided by other evolution-as-a-

service for controllers.

NOTE 95 - underlays may have evolution of

controllers deployed including from 3rd parties.

AN discovers the characteristics of different

types of evolution services for controllers and

utilizes them. Utilizing the services of

evolution as a service may include providing

intents as inputs, providing evolution

algorithms as inputs, providing module and/or

controller repositories as input and accepting

evolved controller candidates as outputs.

AN-arch-req-094
It is required that AN provides experimentation

of controllers as a service to underlays.

NOTE 96 - underlays may have different types

of controllers deployed including from 3rd

parties. AN discovers the characteristics of

different types of controllers and provides

experimentation as a service and provides

results as output for various types of

experimentation scenarios.

AN-arch-req-095
It is required that AN enables import and

export of configurations for simulators.

NOTE 97 - examples of configurations for

simulators are simulated network topologies,

simulated number of devices, simulated traffic

settings, closed loop interfaces.

AN-arch-req-096
It is required that AN enables asynchronous

trigger of experimentation.

NOTE 98 - examples of asynchronous triggers

are evolution of new set of controllers which

need to be validated, updated network

configurations by operator, provisioning or

update of network functions in the underlay.

AN-arch-req-097
It is required that AN enables validation of

results of experimentation.

NOTE 99 - examples of validation include

sanity checks, functional and non-functional

tests.

AN-arch-req-098
It is required that AN enables feedback to the

design of controllers based on the results of

experimentation.

NOTE 100 - examples of feedback are

experimentation logs, test scenarios along with

detailed results.

AN-arch-req-099
It is required that AN enables design of

experimentation scenarios based on use case

descriptions.

NOTE 101 - example of design representation

is TOSCA definitions, derived from use case

representations.

AN-arch-req-100
 It is required that AN discovers and utilizes the

services provided by other experimentation-as-

a-service for controllers.

NOTE 102 - underlays may have

experimentation of controllers deployed

including from 3rd parties. AN discovers the

characteristics of different types of

experimentation services for controllers and

utilizes them. Utilizing the services of

experimentation as a service may include

providing intents as inputs, providing

experimentation algorithms as inputs,

providing module and/or controller repositories

as input and accepting experimentation results

as outputs.

AN-arch-req-101
It is required that AN selects reference points in

the underlay where controllers could be

deployed.

NOTE 103 - examples of considerations for AN

while selecting the reference points are trade-offs

in terms of benefits (e.g. spectral efficiency,

latency, etc) as against the notional cost of training

of models or communication overheads.

AN-arch-req-102
It is required that AN selects the

experimentation scenarios, data generation and

simulators, based on the selected reference

points in the underlay where the controllers

could be deployed.

AN-arch-req-103
It is required that AN selects the controllers for

integration in the underlay based on the results

of the experimentations which are in turn based

on the reference points in the underlay where

the controllers could be deployed.

AN-arch-req-104
It is required that AN integrates the controllers

the underlay, selected based of the

experimentation results, at the reference points

in the underlay where the controllers could be

deployed.

NOTE 104 - this may involve control and data

flow modifications according to the integration

methods for controllers in the underlay.

AN-arch-req-105
It is required that AN integrate data collection

mechanisms.

NOTE 105 - data collection mechanisms may

include AR/VR glasses or other types of

sensors. Data collection mechanisms may be

provided by 3rd party providers.

AN-arch-req-106
 It is required that AN creates a virtual model of

real environment for experimentation.

NOTE 106 - virtual model may use

visualization and perception mechanisms like

AR/VR, simulation engines and data generation

mechanisms.

AN-arch-req-107
It is required that AN uses the virtual model

along with the real-world inputs to analyse and

optimize the underlay and to provide feedback

to humans.

NOTE 107 - analysis may use AI/ML models.

Optimization may involve configurations in the

underlay. Feedback to humans may be

generated in AR/VR formats.

AN-arch-req-108
 It is optional that 3rd party modules or

applications can be integrated in the collection,

analysis or feedback steps in the AN.

NOTE 108 - for example a software development

kit (SDK) may be exposed to 3rd party developers

who may develop new applications to analyse the

AR-collected data.

AN-arch-req-109
It is required that AN enable discovery of

capabilities at the various levels of underlays.

NOTE 109 - examples of levels in underlays

are RAN and core network. capabilities of the

underlays may differ based on the resource

availabilities e.g. compute, memory, already

deployed controllers etc.

AN-arch-req-110
It is optional that AN enables creation of

application definitions which can then be

decomposed to controllers which can be

deployed at various levels of the underlay,

based on the capabilities at those levels of the

underlay.

NOTE 110 - application definitions may be in

the form of intents.

AN-arch-req-111
It is optional that AN enables optimal

placement of controllers based on the

application requirements and capabilities at

various levels of the underlay.

AN-arch-req-112
It is required that AN enables continuous

monitoring of capabilities at various levels of

the underlays and trigger update of controllers

based on any changes to the capabilities.

NOTE 111 - examples of changes to

capabilities of underlays are addition, deletion

of network functions, updates to software

versions, etc.

AN-arch-req-113
 It is required that AN uses interoperable

format for storing controllers.

NOTE 112 - various components in AN may

read/write from the stored controllers. E.g.

evolution controller may read existing

controllers (even from third parties) and utilize

them for composing new controllers, which are

in turn written in the storage.

AN-arch-req-114
 It is optional that AN supports experimentation

and derivation of inter-controller coordination

strategies.

NOTE 113 - examples of inter-controller

interaction are resolution of conflicting goals

for various use cases, like power consumption

vs. coverage optimization. Example of a

relevant strategy is game theory based

cooperative and non-cooperative mechanisms.

AN-arch-req-115
 It is optional that AN supports monitoring and

optimization and creation of new inter-

controller coordination strategies, along with

design of new controllers.

NOTE 114 - optimization may use AI/ML

mechanisms.

AN-arch-req-116
 It is required that AN enables creation, storage,

customization and export of controllers which

can be deployed in various types of network

underlays.

AN-arch-req-117
 It is required that AN enables customization of

controllers which can be deployed in various

types of network underlays, based on the

characteristics of underlays.

AN-arch-req-118
 It is optional that AN enables discovery of the

characteristics of underlays at runtime.

AN-arch-req-119
 It is optional that AN enables 3rd party toolsets

for development and visualization of the

controllers.

NOTE 115 - graphical user interfaces to edit

workflows are examples of 3rd party toolsets.

AN-arch-req-120
 It is critical that AN supports decomposition of

controller designs into parts, which can be

mapped to various parts of the underlay based

on the capabilities and requirements.

NOTE 116 - example of decomposition is

splitting of userplane programs into modules

which can be hosted in various userplane

functions in the network.

NOTE 117 - example of considerations while

splitting of controller designs is resource

requirements of the controllers and capabilities

of the underlay.

AN-arch-req-121
It is critical that AN supports placement or

deployment of controllers in various parts of

the underlay.

NOTE 118 - deployment may consider

resource availability and other capabilities of

the underlay along with the requirements of the

controller.

AN-arch-req-122
It is optional that AN supports monitoring and

optimization of decomposition, design,

placement or deployment of controllers in

various parts of the underlay.

AN-arch-req-123
It is critical that AN supports composition of

controllers deployed in various parts of the

underlay to form complex controllers.

AN-arch-req-124
It is optional that AN supports input of use case

design whereas design, and deployment of

controllers in underlays may be done by third

parties.

AN-arch-req-125
 It is critical that AN supports description of

use case in a declarative format.

NOTE 118 - AN use case may be described at

high level.

AN-arch-req-126
 It is critical that AN supports derivation of

domain specific intents from the use case

description.

NOTE 119 - ML intent [ITU-T Y.3172] is an

example of domain specific intent.

AN-arch-req-127
 It is optional that AN supports experimentation

in domain specific Sandbox and optimization

of domain specific intents.

NOTE 120 - ML Sandbox [ITU-T Y.3172] is

an example of domain specific sandbox.

AN-arch-req-128
 It is critical that AN supports tightly coupled

and loosely coupled integration with underlays,

and capability and preference of the underlay

(to perform a tightly coupled or loosely

coupled AN integration) may be discovered at

the time of integration with the underlay.

NOTE 121 - in tightly coupled integration,

underlay may utilize the components provided

by AN provider. Whereas in loosely coupled

integration, underlay may deploy and use its

own providers for AN.

AN-arch-req-129
 It is critical that AN enables controllers to use

domain specific mechanisms to manage

resource sharing, service integrations, across

administrative domains in the underlays.

NOTE 122 - E.g. dynamic service agreements,

distributed ledger technologies.

AN-arch-req-130
 It is critical that AN interfaces with resource

orchestration mechanisms in the underlay.

NOTE 123 - Examples of resource

orchestration mechanisms are not only network

function virtualization (NFV) management and

network orchestrator (MANO) but also domain

specific resource managers like multi user

schedulers in RAN.

NOTE 124 - interface may be used to trigger

actions or monitoring.

AN-arch-req-131
It is optional that AN supports discovery of

need for new controllers based on monitoring

of the underlay.

NOTE 125 - need for new controllers may be

discovered based on monitoring of various

parameters or KPIs.

AN-arch-req-132
It is critical that, based on the discovery of the

need for new controllers, AN supports selection

of new controllers from controller repositories,

as candidates to be deployed in the underlay.

NOTE 126 - controller repositories may be

external or internal to the AN provider.

AN-arch-req-133
It is critical that, based on the candidates

selected from repositories, AN supports

evaluation of new controllers, as candidates to

be deployed in the underlay.

NOTE 127 - evaluation may be done based on

use case specific metrics.

AN-arch-req-134
It is critical that, based on the candidates

evaluated from repositories, AN supports

deployment of new controllers, at runtime, in

the underlay.

AN-arch-req-135
 It is optional that AN supports peer interaction

between controllers without the intervention of

a central coordinating function.

NOTE 128 - Example of peer interaction is

exchange of metadata for resource allocation and

load balancing.

8. Architecture Description

This clause describes the basic building blocks, components and subsystems. It also describes the

list of external functionalities that the architecture depends upon.

8.1 Description of Controller

As noted in the description of use cases for autonomous networks [ITU-T Y.Supp 71], a controller

is a workflow, open loop or closed loop [ITU-T Y.3115] composed of modules, integrated in a

specific sequence, using interfaces exposed by the modules, which can be developed

independently of the system under control before integration into the system under control, to

solve a specific problem or satisfy a given requirement.

Exploratory evolution and experimentation are examples of functionalities in the AN which act

upon controllers. Exploratory Evolution hosts evolution controllers which provides the

functionality that creates and modifies a controller in accordance with the system under

control and the real-time changes therein. Experimentation subsystem hosts experimentation

controller which provides the functionality that validates controllers using inputs from a

combination of underlay network, simulators and/or testbeds In addition, the Dynamic Adaptation

subsystem hosts the Curation, selection and operation controllers which provide the functionality

of process of continuous integration of controllers to an underlay, as the underlay undergoes

changes at run-time.

NOTE 1- examples of system under control are managed entities, workflows and/or processes in

an IMT-2020 network.

NOTE 2 – Modules may themselves be workflows, open loops, or closed loops. Other examples

of modules include aggregation functions, DNS configuration interfaces, functions gathering

orchestrator statistics, an entire deep neural network (DNN) model, a single layer of a DNN

model, etc.

In this architecture, we introduce the term controller to refer specifically to a workflows, open

loops, or closed loops that are composed of modules.

Architecture described here enables the design, creation, and adaptation of these controllers.

This architecture inputs modules that are amenable to composition and produces controllers which

are in turn modular.

Figure 1: Controllers and Underlay Interaction

Figure 1 shows the different forms interaction of controllers with the underlay network. The

interactions shown here are:

• Controller interacting with a hardware components [b-LogicNets]

• Controller interacting with software components

• Controller interacting with an orchestrator or other software control mechanism [b-

FRINX]

• Controller interacting with another controller

NOTE 3- Building upon this simple representation, hierarchies of controllers may be formed.

8.2 Description of the Architecture Components

This clause describes the components of the architecture for autonomous networks to achieve the

requirements mentioned in clause 7.

This clause describes the components of the architecture for autonomous networks to realize the

key concepts of exploratory evolution, experimentation and dynamic adaptation.

8.2.1 Evolution controller

Exploratory evolution is the process that creates and modifies a controller in accordance

with the system under control and the real-time changes therein.

NOTE 1 - An example of a process that creates a controller is the composition of

controllers from modules or other closed loops. This may involve the selection of modules

which are used for composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic

change in the controller’s structure by adding new modules, deleting existing modules,

replacing existing modules, or rearranging the structure of a controllers modules, in

accordance with the real time changes in the system under control.

An evolution controller is the component responsible for managing the application of

exploratory evolution on controllers. Exploratory evolution is the ability to modify the

structure and configuration of a controller. This assumes that the controllers are composed

of modular and configurable elements or “building blocks”. Thus, a controller’s structure

may be modified by:

• The configuration of each software modules parameters

• The selection of which modules are present within a controller

• The relationships between the modules within the controller

The process of exploratory evolution is agnostic to whether the current operational

environment is known ahead of time or is completely new and unseen. The process

includes generating options for exploratory evolution and based on the characteristics of

the controller and the knowledge base, applying such evolutions on various types of

controllers. As part of this, controller characteristics may be discovered, new controllers

may be composed from modules or other controllers to provide new capabilities in the

network. Declarative representation of use case, provided by AN orchestrator, is used as

input by the evolution controller. Controller descriptions may be updated by the evolution

controller based on the exploratory evolution.

NOTE 3 - Examples of processes to drive the modification of a controller are:

1) biologically inspired artificial evolution, as found in evolutionary computing or genetic

programming [b-large-evolution, b-evolution],

2) Bayesian optimisation [b-bayesian-radio],

3) game theoretic approaches [b-game-theory].

Specific algorithms, including those provided by third party solution providers, used for

exploratory evolution are out of scope of this document.

NOTE 4 - Examples of application of exploratory evolution in various application contexts

are given below:

- 1) A “RAN channel scheduling controller” is an example of a controller used to allocate

radio resources to users in a multi-user environment. Exploratory evolution is applied to a

RAN channel scheduling controller in response to the change of radio channel feedback

from the UE. This may include selecting the most appropriate algorithm from a set of

alternatives.

- 2) An “anomaly detection controller” is an example of a controller used to detect abnormal

states in the operation of a network service, such as security attacks or peaks in resource

usage for network function. In this context, the new approaches of data fusion algorithms

[b-data-fusion] may be applied. Exploratory evolution is applied to “anomaly detection

controller” by optionally using and configuring newly provided data fusion algorithms as

the input of an “anomaly detection controller”,

- 3) A “time-to-live controller” is an example of a controller used to configure the time

duration for which a certain content is cached in a CDN server. In a time-to-live controller

in a caching system at the edge, optimisation of the timeout parameter(s) is an example of

application of exploratory evolution.

- 4) A “scaling controller” is an example of a controller used to increase or decrease the

resource allocation for a network function. In this context, exploratory evolution may be

applied by controlling the configuration of the scaling method of deployed controllers in a

specific network domain.

NOTE 5 – Optimisation of exploratory evolution, e.g. reducing the time taken for

exploratory evolution in previously seen operational environments, is possible by using

accumulated knowledge. However, such optimisation scenarios are out of scope of this

document.

8.2.2 Knowledge Base

Knowledge in AN is a collection of resources that helps in solving a specific type of

problem.

NOTE 1 – Examples of resources are description of a problem along with the description

of corresponding potential solutions to that type of problem. The descriptions may be in

the form of standard metadata. Resources may include possible causes of the problem,

corresponding solutions and their advantages, disadvantages and optimization approaches

etc. Problems may have sub-problems e.g., QoE problems may have sub-problems

including coverage problems and/or interference problems.

A knowledge base component manages knowledge derived from and used in autonomous

networks. It is updated and accessed by various components in the autonomous network.

NOTE 2 - Knowledge includes metadata which is derived from the capabilities, status of

AN components. This knowledge is stored and exchanged as part of interactions of AN

components with knowledge base. Knowledge can be derived from different sources

including structured or unstructured data from various actors involved in a use case and/or

various experiments in AN Sandbox.

NOTE 3 – managing knowledge includes storing, querying, export, import and optimize

the knowledge. AN workflows, including exchange of knowledge between AN

components, may in turn result in update of knowledge base.

NOTE 4 – Uses of knowledge stored in knowledge base by other components include to

facilitate the deployment and management of controllers in underlays, and selection and

optimization of experimentation strategies in the experimentation stage.

8.2.3 Experimentation Controller

Experimentation is the process that validates controllers using inputs from a combination

of underlay network, simulators and/or testbeds. The process of experimentation ensures

that the controller under experimentation satisfies the use case requirements and is

compatible with deployment in the intended underlay.

An experimentation controller is a component which generates potential scenarios of

experimentations based on controller descriptions and representations of the use case.

Experimentation controller uses additional information as provided by the knowledge base

and that provided by AN orchestrator in the process of generating scenarios of

experimentation.

NOTE 1 - Methods for generating scenarios for experimentation are assisted by additional

information including knowledge captured in the knowledge base and/or machine learning.

Experimentation controller may exploit the structured representation (e.g. TOSCA YAML)

of the controllers to derive scenarios for experimentation. Experimentation scenarios can

also be provided by 3rd party providers to be used by the experimentation controller.

In addition to generating scenarios for experimentation, Experimentation controller

executes the scenarios in the AN Sandbox, collates and validates the results of the

experimentation. Reports may be generated by experimentation controller which captures

information from the steps of generating scenarios, execution and validation of controllers.

These reports may be shared with humans or used for analysis by algorithmic methods.

Experimentation scenarios may be optimized as result of analysis of the experiments.

NOTE 2 - Selection of new validation or test scenarios are examples of optimizations

applied to experimentation scenarios.

NOTE 3 - In the process of experimentation, experimentation controller can use different

types of components such as simulators, data generators hosted in the AN Sandbox,

including those provided by 3rd parties. Experimentation may be triggered by various AN

workflows which necessitates validation of controllers, e.g. software update of controllers.

The process of experimentation may be configurable e.g. it may be triggered periodically,

asynchronously.

NOTE 4 - Examples of experimentation in various application contexts are given below:

• The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or

model checking to ensure that provided management and orchestration solutions

are well-formed against pre-defined rules

• The use of simulators or digital twins in offline validation of controllers. These

simulators or digital twins can support the same interfaces as underlays.

• The use of digital twins [b-Digital-twin] in online validation of controllers before

deployment

NOTE 5 - online validation involves use of timescales comparable to real

underlays e.g. validation of controllers (xApps) [b-ORAN] using digital twins.

• Combinations of the above to achieve broader coverage of validation, from the

offline validation to online validations during the operation of the underlay.

8.2.4 Adaptation Controller

Dynamic adaptation is the process of continuous integration of controllers to an underlay,

as the underlay undergoes changes at run-time. Integration of controllers may involve

multiple domains of the underlay.

NOTE 1 – Examples of underlays are edge networks, core networks, management plane,

CI/CD pipelines, etc. Integration of controllers into the underlay involves usage of

underlay specific APIs, customization of interfaces, configurations and interface elements

used for integration. Examples of changes undergone by the underlay are updates in

software or hardware components, failures in software or hardware components,

configuration changes, or other external dependencies (including those provided by 3rd

parties). Continuous integration includes updating the controllers in the underlay to handle

the changes undergone by the underlay.

Examples can include:

• Scaling via the routing of traffic to different processing nodes in either the use of

control plane via DNS updates or SDN configurations, refer FG-AN-usecase-040

in [ITU-T Y.Supp 71]

• Scaling via the number, replication, and distribution of bare metal, virtual machine,

or container resources attached to network services refer FG-AN-usecase-018 in

[ITU-T Y.Supp 71]

• Scaling via the priority or relative bandwidth allocation of radio spectrum to

different user or use case categories in RAN in FG-AN-usecase-032 in [ITU-T

Y.Supp 71]

NOTE 2 – Specific configurations for integration of controllers for specific use cases may

be out of scope of this document.

Adaptation controller is the component in AN, responsible for selecting candidate

controllers from a set of generated controller configurations which are ready for

integration and executes the integration to the underlay. An adaptation controller will

monitor deployed controllers and the underlay, deciding opportunities for new controller

integrations to the underlay. In monitoring a deployed controller, an adaptation controller

will discover underlay specific parameters (including those provided by 3rd parties) for

optimisation, data points of collection and KPIs for tracking and may update such

knowledge to the knowledge base.

Adaptation controller has two parts: Curation controller (responsible for selection and

maintenance of the controllers within the curated controller lists from the evolvable

controllers) and Selection Controller (responsible for the selection of a services’

operational controller from the curated controller lists).

Generation of configurations for adaptation may take the controller description as input

along with the description or metadata related to the underlays. In the process of

adaptation, the adaptation controller may utilize the services provided by service

management frameworks such as ONAP [b-ONAP].

Reports may be generated by adaptation controller which captures information from the

process of adaptation. These reports may be shared with humans or used for analysis by

algorithmic methods. Adaptation process may be optimized as result of analysis of the

reports.

NOTE 3 - Examples of adaptation in various application contexts are given below:

• The need to use different traffic shaping algorithms for various geographical

contexts, such as urban vs rural

• Business priorities may change over a period of time, e.g. prioritization of

performance KPIs over energy efficiency or prioritisation of internal applications

over third party applications. These changes in business priorities may necessitate

the use of different virtual machine or container scheduling controllers.

• There could be a need to deploy new technology in order to improve or optimise

operation, including adding new capabilities that previously did not exist. E.g. new

AI/ML algorithms or new data fusion approaches to blend the increasing number of

data sources.

• There could be a need to deploy new technology in order to address errors or faults.

E.g. data acquisition or actuation software for new hardware devices or adaptation

software to account for incompatibilities in deployed technology.

Selection of candidate controllers from a set of generated controller configurations is

followed by the processes used to drive adaptation in the underlay. Examples of processes

used to drive adaptation are:

• Simple threshold-based replacement of one deployed controller with another,

where threshold is defined against a controller’s performance

• PID controller [b-PID]-based replacement of one deployed controller with another

• The use of AI/ML model in the prediction of future operation and response to pre-

emptively exchange a deployed controller [ITU-T Y.Supp 71]

• Combinations of the above in concert with knowledge stored within the knowledge

base

8.2.5 AN orchestrator

AN orchestrator is the component responsible for managing workflows and processes in

the AN and steps in the lifecycle of controllers. To manage the workflows and processes in

AN, AN orchestrator coordinates with various other functions in the AN as well as outside

the AN.

NOTE 1 - Examples of workflows and processes in the AN are interactions with E2E

network orchestrators, interactions with knowledge base, and AN component repositories.

Examples of controller instances are:

• A set of Java objects to be executed on the JVM

• A workflow of tasks as represented in the FRINX machine [b-FRINX]

• A CL in the ZSM framework [b-ETSI GS ZSM 009-1]

• A controller in the ONAP framework [b-Acumos-DCAE]

• An ML pipeline [ITU-T Y.3172]

NOTE 2 - Steps in the lifecycle of controllers are creation or instantiation of controllers

from controller designs, storage, validation, update, deletion, discovery, configuration,

deployment, monitoring of controllers.

NOTE 3 - Some steps in other functions applied to controllers are outside the scope of

lifecycle of controllers e.g. optimization of controllers may be achieved with the help of

functions external to the AN.

Being part of the management plane, AN orchestrator provides interface to human

operators in the form of reports regarding the functioning of the AN and human interfaces

for configuring the AN, where applicable.

8.2.6 AN Sandbox

AN Sandbox is an environment in which controllers can be deployed, experimentally

validated with the help of (domain specific) models of underlays, and their effects upon an

underlay evaluated, without affecting the underlay.

NOTE 1 - AN Sandbox generates reports regarding the experimental validation of

controllers. These reports are collated by the Experimentation controller and the

Knowledge Base is updated.

NOTE 2 - The domain specific models of underlays are generated using inputs from

underlays. These inputs are used in configuring simulators in AN Sandbox. For example

the packets per second to be used to simulate a real world scenario. In addition, AN

Sandbox simulates scenarios which are rarely or never seen in underlays. For example a

burst of traffic which rarely occurs in real network.

AN Sandbox hosts different types of components such as simulators, data generators,

including those provided by 3rd parties. Experimentation controller may trigger

experiments of various AN workflows which necessitates validation of controllers, e.g.

software update of controllers.

8.2.7 External functionalities

In addition to the architecture components, there are functionalities external to this

architecture framework, which the enhances the AN architecture. These external

functionalities are provided by existing architecture implementations.

Examples may include:

• AN Controller repositories [b-dagsthul]: This is a repository which contains controllers

and modules. AN components (e.g. evolution controller) may access this repository to

implement extended functionalities, e.g. composing new controllers.

• External knowledge repositories: In addition to knowledge bases implemented within

the AN architecture, there are external knowledge repositories used by AN architecture

to access such knowledge.

• Domain orchestrators: Domain orchestrators (may be implemented by third parties)

may provide specific functions associated with specific technologies such [b-ETSI GS

ZSM 009-1, b-FRINX, b-ONAP].

• Development pipelines (CI/CD pipelines): provides continuos development

environment for components, modules and controllers.

• Model repositories [ITU-T Y.3176] : the model repository would store the

specifications of models used in the AN.

NOTE - examples of types of models which are stored in the model repositories:

• Models used by a controller: these are models either placed within a controller

or is accessed by the controller, via an API exposed by a third party.

• Models used by an AN component: these are models either placed within a AN

component such as AN orchestrator, or is accessed by the component, via an

API exposed by a third party.

8.3 Description of Subsystems

8.3.1 Exploratory Evolution Subsystem

Figure 2: Exploratory Evolution Overview

As stated in Clause 6, any approach towards an autonomous network (truly or otherwise), requires

the ability to adapt its operation. This adaptation can be motivated by changing operation

environments, new technological innovation, faults, human error, the pursuit of contextual

optimality, etc. Additionally, based on the requirements in Clause 7, this architecture requires the

ability to alter the logic which to use to operate autonomous networks (i.e. the controller). Without

such functionality, it is not possible to achieve adaptation which is sufficiently flexible across the

spectrum of use cases, operational environments, technological innovations, and potential human

errors.

NOTE 1 - It is important to remember that controllers may themselves posse the ability to adapt

their outputs based on learning or experience – so called cognitive controllers [b-Mwanje 2020].

Even in this case, there is a limit to their ability to adapt to the unknown (e.g. a never before seen

anomaly), to embrace new technologies (e.g. a new transport protocol), or to handle error (e.g.

even the authors of this document have been known to create bugs). In all cases, human

intervention is required.

Controller Specifications are high-level, non-executable representation of a Controller with the

metadata corresponding to necessary functionality of the controller and a utility function to be

achieved. Controller designs are low-level, non-executable representations of controller containing

modules, their configurations, and their parameter values which is used to instantiate a controller.

Controller designs are derived from controller specifications by the evolution controller.

Collection of controllers may be formed with each of them tasked with the same purpose but with

various different compositions. These are called Controller hierarchies.

Hence, the evolutionary exploration subsystem is responsible for:

1. The automatic generation of controller designs from composable software module

specifications.

2. The automatic modification of controller designs based on existing controller and module

specifications and/or designs.

3. The automatic generation of controller hierarchy designs from controller specifications

4. The automatic modification of controller hierarchy designs based on existing controller

hierarchy specifications and controller specifications.

Exploratory evolution will enable the automated design or modification of controllers and their

hierarchies for the purpose of exploring the range of possible controller logics - and hence how the

controller will adapt to the operational environment.

NOTE 2 - One approach to achieve such automated design for controllers and controller

hierarchies is population-based artificial intelligence (AI) techniques, such as evolutionary

computing [b-evolution].

8.3.2 Experimentation Subsystem

Figure 3: Experimentation Subsystem

Controllers must be validated before being integrated to the underlay to ensure that it is free of

errors and meets both the functional and non-functional requirements.

In the architecture, the experimental evaluation subsystem is concerned with the validation of

controllers, as shown in Figure 3. Specifically, an experiment controller will design, orchestrate,

and execute an experimental scenarios.

Validation is a spectrum of activities that may encompass one or more activities, including static

testing, simulation, testbed deployment and canary testing. In addition, validation can all be used

to assess non-functional properties, such as trust, providing confidence in the “handover of work,

duties, or decisions” to the architecture.

To compliment these validation activities, the experiment controller also requires additional input

from about the underlay network and its configuration. As shown in Figure 3, this information

should be stored and made available from the knowledge base. Representative examples of such

data are discussed in Clause 8.3.4

8.3.3 Dynamic Adaptation Subsystem

Figure 4: Dynamic Adaptation Subsystem

The dynamic adaptation subsystem is responsible for curating a set of controllers which may be

considered as “fit for purpose” or “safe enough to try”, selecting a subset of controllers for

integration with the underlay.

NOTE 1 - Here, “fit for purpose” is evaluated based on the fitness function or utility score

obtained from the experimental evaluation system (Clause 8.3.2.2).

This set of controllers is drawn from the controllers which were validated by the experimental

subsystem. Additionally, this subsystem is responsible for which of these curated controllers

should be selected for actual deployment in the management of the managed entity. Precisely

when, under what conditions, or with what frequency curation or selection happens are

configurable properties of the curation and selection processes themselves. This is necessary as

each managed entity, as well as the operational and business environments in which they operate,

vary from use case to use case. To accommodate this, the curation process is guided by

requirements. Examples of such requirements may include:

• The size of the curated controller lists

• The average utility of the curated controller lists

• The diversity of the controllers within the curated controller lists

• The utility threshold required to be considered to enter or remain within the curated

controller lists.

NOTE 2 - it is important to remember that metrics such as KPI, QoS, QoE, etc are expected to be

represented within a controller’s utility function.

As shown later in Figure 5, the evolvable controllers are stored within the network information

base. As the evolvable controllers undergo constant evolution, it is the responsibility of the

dynamic adaptation to bring stability to the operation of the managed entity by creating a level of

separation between evolvable controllers managed by the autonomy engine and the operation

controller integrated with the managed entity.

Also shown in Figure 5, the curation and selection processes are realised as controllers. As such,

their internal structure may be composed (and subsequently evolved) from different modules as

required.

NOTE 3 - For example, a selection controller may be composed of modules which send the trend

of fluctuation of use populations, network traffic, or resource demands. As discussed in 8.1 such

controllers may be implemented using ML pipelines.

Selection and integration of controllers to a managed entity requires a stable set of functioning

controllers which can respond correctly in sub-second timescales, depending on the use case in

question.

Accordingly, the autonomy engine and dynamic adaptation subsystem would correspond to the

design-time and run-time concepts, respectively, as expressed in [ITU-T Y.3177].

8.3.4 Knowledge Base subsystem

Autonomous networks requires the collection, description, usage, storage, and analysis of data.

The analysis of data and information, resulting in an understanding of what the data and

information mean is often referred to as knowledge.

Data, information, and knowledge which is required for the controllers to operate the managed

entity and in its goal of supporting the continuous exploratory evolution, realtime online

experimental validation, and dynamic adaptation.

Knowledge base is a subsystem which manages storage, querying, export, import and optimization

and update knowledge, including that derived from different sources including structured or

unstructured data from various components or other subsystems.

NOTE 1 - Knowledge includes metadata which is derived from the capabilities, status of AN

components. This knowledge is stored and exchanged as part of interactions of AN components

with knowledge base. Knowledge can be derived from different sources including structured or

unstructured data from various actors involved in a use case and/or various experiments in AN

Sandbox.

Managing knowledge includes storing, querying, export, import and optimize the knowledge. AN

workflows, including exchange of knowledge between AN components, may in turn result in

update of knowledge base.

NOTE 2 – Uses of knowledge stored in knowledge base by other components include to facilitate

the deployment and management of controllers in underlays, and selection and optimization of

experimentation strategies in the experimentation stage.

Examples of knowledge stored in a KB are :

1) relevant descriptions of modules and controller meta data taxonomies and ontologies.

2) An underlay network configuration represents the various arrangement, relationships, contents,

and settings of the elements of an underlay network as may be required by the online realtime

experimental evaluation subsystem to build and configure an experimental underlay network, or

other architectural components. E.g. Network topology, Host configuration and location related

parameters, Types of services and application requirements. The configurations may be

represented using OASIS TOSCA YAML [b-OASIS TOSCA-v1.3]

3) Metrics: Metrics are the data related to the status and performance of the different components

of the architecture, controllers, operating environment, underlay network, and managed entities.

e.g. Resource Usage such as CPU usage, Workload such as packet rate, Performance metrics such

as QoS.

8.4 Autonomy Engine

Autonomy engine refers to the grouping of the evolutionary exploration subsystem and the real

time online experimentation subsystem. Together, these architectural components enable the more

general trial and error process where new candidate controllers generated in the former and

validated by the latter.

8.5 Description of Architecture

 This clause describes the high-level architecture framework for autonomous networks, as shown

in Figure 5: High-Level Framework for Autonomous Network. As noted previously, the goal of

this architecture is to support the continuous evolutionary-driven creation, validation, and

application of a sea of CL controllers to a network and its services such that the network and its

services may become autonomous.

Figure 5: High-Level Framework for Autonomous Network

8.5.1 Controller Roles

As shown in Fig 5, there are four different roles performed by Controllers. These different

controller roles are:

NOTE - Even though the roles are distinct, from a compositional perspective, the exploratory

evolution (as explained in Clause 8.3.1), real time experimentation (as explained in Clause 8.3.2)

and dynamic adaptation (as explained in Clause 8.3.3) can be applied to these controllers. See

8.5.2 for details.

• Operation Controller: A controller responsible for the operation of a managed entity.

Operation may include analysing the data (e.g. throughput or latency) related to the

managed entity and applying these actions (e.g. scale in/out or migration) to the managed

entity. Operation controller is selected and applied to the managed entity by selection

controller. After application of Operation Controller to a managed entity, the controller is

continuously monitored by the selection controller for the purpose of providing the most

effective operation of the managed entity.

• Selection Controller: A controller responsible for the selection of a services’ operational

controller from the curated controller lists. Selection controller utilizes metrics including

the data related to the status and performance of the different components of the

architecture and managed entities as described in 8.3.4 recorded in the knowledge base to

select the operation controller to be deployed in the underlay.

• Curation Controller: A controller responsible for the selection and maintenance of the

controllers within the curated controller lists from the evolvable controllers.

• Evolution Controller: A controller responsible for evolution of controllers. Evolution

Controller may use as input, a set of controllers called evolvable controllers, which are

subject to the exploratory evolution process.

These controller roles are used in many workflows in the architecture. For example, a end-to-end

workflow which starts with formulation of controller specifications to controller deployment in

the underlay is given below.

1. Controller specifications, module specifications, experimental specifications are loaded in

the Knowledge base.

2. controller design for default evolutional, curation, and selection controllers are loaded in

the Knowledge base.

3. Evolution Controller is instantiated based on default controller designs in the KB.

4. Evolution Controller generates new evolvable controller designs based on modules and

controller specifications or pre-existing designs in the KB and stores them in the KB.

5. Controller designs from the KB are picked up by Experiment controller and prepared for

validation

6. Experiment controller designs and builds experiments needed to validate controllers based

on experimental specifications from the KB, Controllers are validated against the

experiments

The results from the analysis & report of the experiment are stored in KB.

7. Curation Controller curates suitable controllers from the Evolvable Controllers to be used

in the management of the managed entity for specific context/intent

8. Selection Controller analyses and decides most suitable controllers from the curated list to

manage the managed entity in the current context

9. AN orchestrator will instantiate or replace existing Operation Controller with the most

suitable controller to perform actions on intended managed entity.

8.5.2 Self-reflective use of the AN architecture framework

The AN architecture framework shown in fig 5 is used for creating/adapting controllers, validating

controllers, applying controllers to a managed entity. Despite having different roles, from a

compositional perspective, the exploratory evolution, experimentation and dynamic adaptation can

be applied to these controllers.

Figure 6: Self-Reflective use of the AN architecture framework

The architecture is self-reflective in its operation i.e. architecture has the ability to modify its own

operation to more effectively adapt to the current operational situation without the involvement of

the human using the same processes as managed entities, as shown in Fig 6. Thus, the architecture

itself becomes a collection of managed entities.

NOTE 1 - Even though Fig 6 shows only a general application of the AN architecture framework

to itself, specific instances are possible where an operational controller, an evolution controller, an

experimentation controller, a selection controller, and/or a curation controller are the managed

entity.

NOTE 2 - Fig 6 refers to AN underlay. This concept refers to an instance of AN architecture

framework (or a subset of it) used, in turn, as an underlay of another instance of AN architecture

framework.

9. Sequence diagrams

This clause gives the sequence diagrams showing the interaction between the architecture

components.

9.1.1 Exploratory Evolution of Controllers

Exploratory Evolution of Controllers involves creation and modification of controllers in

accordance with the underlay network and the real-time changes therein. Below is an example

scenario where controllers are created. In this example, AN operator provides a new use case

specification from which new controller specification controllers are derived. There are additional

example scenarios where the Evolution controller reuses an existing Controller specification and

applies the Exploratory evolution process.

Figure 7: Creation of Controllers

The steps involved in the scenario described in Fig 7 are :

1. AN operator provides a use case specification to the AN orchestrator. Use case

specification includes the actors, their relationships and utility functions corresponding to

the use case.

2. An orchestrator derives an evolution specification from the use case specification.

Evolution specification has a Controller specification with the metadata corresponding to

necessary functionality of the controller and a utility function to be achieved (after the

exploratory evolution process).

3. evolution controller queries the KB for modules corresponding to the controller

specification.

4. The knowledge base replies to the evolution controller with the available modules

corresponding to the request.

5. This is an optional step where the evolution controller requests knowledge from the

knowledge base relevant to the use case specification or the exploratory evolution process.

6. Corresponding to the optional step 5, the knowledge base responds with requested

knowledge

7. Evolution controller applies the exploratory evolution process to create new controller(s).

This includes composition of controllers from modules or other closed loops as described

in clause 8.2

8. The evolution controller updates the KB. This includes storing the generated controllers to

the knowledge base.

NOTE - Discussion of the logic used to drive the exploratory evolution process is beyond the

scope of this document. Examples of such processes can be found in clause 8.2.

9.1.2 Experimentation for Controllers

Experimentation for Controllers involves validation of controllers using inputs from a

combination of underlay network, simulators and/or testbeds. Below is an example scenario where

evolvable controllers are validated. In this example, a new experiment specification, which has

controller specifications to be validated, is provided by AN orchestrator. Experiment controller

derives scenarios for experimentation based on the experiment specifications. Based on these

scenarios, Experiment controller interacts with the KB to gather additional supporting

specifications (experiments and/or controllers) and relevant knowledge to design an experiment to

validate the controllers included in the Experiment specification.

NOTE 1 - There are additional example scenarios where the Experiment controller reuses an

existing experiment specifications (stored in the KB) and designs the experiments to validate the

controller included in the experiment specification provided by the AN orchestrator.

The steps involved in the scenario described in Fig 8 are :

Pre-requisites:

0. Experiment specifications and evolvable controllers are populated in the KB. This may be done

based on Creation of controllers in Fig 8 or based on offline provisioning by AN operator. In

addition, the AN Sandbox is populated with components which are ready for instantiation and

execution to validate the controllers.

1. AN orchestrator provides experiment specification which has the controller specification

for the controller to be validated.

2. Experimentation manager requests the current list of experiments from the KB

3. The knowledge base replies with the requested data, if any

4. Experimentation manager requests the current list of controllers from the KB

5. The knowledge base replies with the requested data, if any

6. Experimentation manager requests additional knowledge from the KB, needed to support

the experiment design.

Figure 8: Validation of Controllers

NOTE 2 - Examples of additional knowledge may include operational data from the underlay,

such as user traffic behaviour, user density in a geographical area, previous security attacks,

known bad configurations of base station tilt angles, or mean time between failures for certain

hardware models.

7. The knowledge base replies with the requested data, if any

8. The experiment controller will design potential experimentation scenarios

9. For each experimentation scenarios, the experimentation manager will request the AN

sandbox to perform the validation

10. The AN sandbox will report the results to the experimentation manager

11. The experimentation manager will perform any necessary analysis of the results, and

notifies the AN orchestrator.

12. AN orchestrator triggers the experimentation manager to update the knowledge base.

13. The Experimentation controller updates the KB. This includes storing the experiment

results for the validated controllers to the knowledge base.

NOTE 3 - Discussion of the logic used to drive the experiment design is beyond the scope of this

document. Examples of such processes can be found in clause 8.2.

9.1.3 Dynamic adaptation of Controllers

Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the

underlay undergoes changes at run-time. Below is an example scenario where validated

controllers are curated, selected and deployed to the underlay.

In this example, the AN Orchestrator will provide the curation controller with an adaptation

specification (which has the controller specifications), to drive the curation process. Curation

controller queries the KB for validated controllers and relevant knowledge. Followed by this, the

AN Orchestrator will provide the selection controller with an adaptation specification (which has

the controller specification) to drive the selection process.

NOTE 1 - There are additional example scenarios where the Curation controller reuses existing

controller specifications rather than deriving them from the Adaptation specification. Similarly,

there are additional example scenarios where the selection controller reuses existing controller

specifications rather than deriving them from the Adaptation specification.

Figure 9: Dynamic Adaptation of Controllers

The steps involved in the scenario described in Figure 9 are:

1. The AN Orchestrator will provide the curation controller with an adaptation specification

(which has the controller specifications), to drive the curation process.

2. The curation controller derives the controller specifications from the adaptation

specification and requests validated controllers from the Knowledge Base

3. The Knowledge Base replies with the requested data, if any

4. The curation controller requests the list of curated controllers for the use case from the

Knowledge Base

5. The Knowledge Base replies with the requested data, if any

6. The curation controller requests additional from the Knowledge Base needed to support

the curation process

NOTE 2 – Examples of additional knowledge may include controller utility scores, current

traffic load, computational resource consumption, common modules used in the

composition of controllers, or semantic relationships to currently deployed controllers for

other use cases.

7. The Knowledge Base replies with the requested data, if any

8. The Curation Controller performs the curation process which decides the validated

controllers that will be added to the curated list, if any, and which controllers in the

curated list should be removed, if any.

NOTE 3 - Discussion of the logic used to drive the curation process is beyond the scope

of this document. Examples of such processes can be found in clause 8.2.

9. The Curation Controller notifies the AN Orchestrator that it has completed the curation

process

10. The AN Orchestrator request the Curation Controller to update the Knowledge Base with

the curated list of controllers

11. The Curation Controller updates the Knowledge Base with the list of curated controllers

for the use case

12. The AN Orchestrator provides the adaptation specification to the Selection Controller

13. The Selection Controller derives the controller specifications from the adaptation

specifications and requests the list of curated controllers from the Knowledge Base

14. The Knowledge Base replies with the list of requested data, if any

15. The curation controller requests additional from the Knowledge Base needed to support

the curation process

NOTE 4 – Examples of addition knowledge may include controller utility scores, current

traffic load, computational resource consumption, common modules used in the

composition of controllers, or semantic relationships to currently deployed controllers for

other use cases.

16. The Knowledge Base replies with the requested data, if any

17. The Selection Controller will perform the selection process which decides the Curated

Controller that should be deployed to the underlay. The deployed controllers are known as

Operational Controllers for the specified use case, if any.

NOTE 5 - Discussion of the logic used to drive the curation process is beyond the scope

of this document. Examples of such processes can be found in clause 8.2.

18. The Selection Controller notify the AN Orchestrator that it has completed the selection

process

19. The AN Orchestrator request the Selection Controller to update the Knowledge Base with

the controller to be deployed as the Operational Controller

20. The Selection Controller will update the Knowledge Base

21. The AN Orchestrator will perform the necessary lifecycle actions to deploy the

Operational Controller for the use case.

Bibliography

[b-Rossi 2020] F. Rossi, V. Cardellini, and F. Lo Presti, “Hierarchical Scaling of

Microservices in Kubernetes,” 2020 IEEE Int. Conf. Auton. Comput.

Self-Organizing Syst., pp. 28–37, Aug. 2020.

[b-Kephart 2003] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer (Long. Beach. Calif)., vol. 36, no. 1, pp. 41–

50, 2003.

[b-3GPP TR 28.810] 3rd Generation Partnership Project; Technical Specification Group

Services and System Aspects; Study on concept, requirements and

solutions for levels of autonomous network; (Release 16)

[b-LogicNets] Umuroglu et al. "LogicNets: Co-Designed Neural Networks and

Circuits for Extreme-Throughput Applications,

https://arxiv.org/abs/2004.03021

[b-Mwanje 2020] Mwanje SS, Mannweiler C, editors. Towards Cognitive

Autonomous Networks: Network Management Automation for 5G

and Beyond. John Wiley & Sons; 2020 Oct 12.

[b-ETSI GS ENI 005] ETSI GS ENI 005 V2.1.1 (2021-12) “Experiential Networked

Intelligence (ENI); System Architecture”

[b-ETSI-AN] Autonomous Networks, supporting tomorrow's ICT business

[b-AUTOML-ZERO] Real, E., Liang, C., So, D. and Le, Q., 2020, November. Automl-

zero: Evolving machine learning algorithms from scratch. In

International Conference on Machine Learning (pp. 8007-8019).

PMLR.

[b-AUTOML] Google’s AutoML tool, https://cloud.google.com/automl

[b-RL] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An

introduction. MIT press.

[b-ITU-JFET] ITU Journal on Future and Evolving Technologies, Blessed et al,

“Network resource allocation for emergency management based on

closed-loop analysis"

[b-OODA] J. Boyd, G.T. Hammond, and Air University (U.S.). Press. A

Discourse on Winning and Losing. Air University Press, Curtis E.

LeMay Center for Doctrine Development and Education, 2018.

[b-FRINX] https://github.com/FRINXio/FRINX-machine

[b-Acumos-DCAE] Acumos DCAE Integration,

https://wiki.onap.org/display/DW/Acumos+DCAE+Integration

[b-NGMN-5G] NGMN 5G White Paper

[b-WEF-DTI] Digital Transformation Initiative Telecommunications Industry,

whitepaper by the World Economic Forum

[b-ETSI-GS-ENI-002] Experiential Networked Intelligence (ENI); ENI requirements

[b-TMFORUM-AN-WP] Autonomous Networks: Empowering Digital Transformation For

The Telecoms Industry, whitepaper

https://arxiv.org/abs/2004.03021
https://cloud.google.com/automl
https://github.com/FRINXio/FRINX-machine

[b-CDNSim] K. Stamos, G. Pallis, A. Vakali: “Integrating Caching Techniques

on a Content Distribution Network”. In Proceedings of the 10th

East-European Conference on Advances in Databases and

Information Systems, LNCS series of Springer Verlag,

Thessaloniki, Greece, September 2006

[b-Chaos Engineering] Kazuyuki Aihara and Ryu Katayama. 1995. Chaos engineering in

Japan. Commun. ACM 38, 11 (Nov. 1995), 103–107.

DOI:https://doi.org/10.1145/219717.219801

[b-Knowledge Graph] ITU AI/ML in 5G Challenge —” Applying knowledge graph and

digital twin technologies to smart optical network”. Online

presentation.

[b-OASIS TOSCA-v1.3] TOSCA Simple Profile in YAML Version 1.3.

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf.

[b-PID] S. Bennett, "Development of the PID controller," in IEEE Control

Systems Magazine, vol. 13, no. 6, pp. 58-62, Dec. 1993, doi:

10.1109/37.248006.

[b-data-fusion] Jens Bleiholder and Felix Naumann. 2009. Data fusion. ACM

Comput. Surv. 41, 1, Article 1 (January 2009), 41 pages.

https://doi.org/10.1145/1456650.1456651

[b-dagsthul] The Dagsthul Artefact Repository:

https://drops.dagstuhl.de/opus/institut_darts.php

[b-evolution] Whitley, Darrell. "An overview of evolutionary algorithms: practical

issues and common pitfalls." Information and software technology

43.14 (2001): 817-831.

[b-capacity-allocation] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez,

"AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network

Slicing," IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications, 2020, pp. 794-803, doi:

10.1109/INFOCOM41043.2020.9155299.

[b-bayesian-radio] L. Maggi, A. Valcarce and J. Hoydis, "Bayesian Optimization for

Radio Resource Management: Open Loop Power Control," in IEEE

Journal on Selected Areas in Communications, vol. 39, no. 7, pp.

1858-1871, July 2021, doi: 10.1109/JSAC.2021.3078490.

[b-large-evolution] Damien Anderson, Paul Harvey, Yusaku Kaneta, Petros Papadopoulos, Philip

Rodgers, and Marc Roper. 2022. Towards evolution-based autonomy

in large-scale systems. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion (GECCO '22).

Association for Computing Machinery, New York, NY, USA, 1924–

1925.

[b-game-theory] Ahmad, I., Kaleem, Z., Narmeen, R., Nguyen, L.D. and Ha, D.B., 2019. Quality-

of-service aware game theory-based uplink power control for 5G

heterogeneous networks. Mobile Networks and Applications, 24(2),

pp.556-563.

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://doi.org/10.1145/1456650.1456651
https://drops.dagstuhl.de/opus/institut_darts.php

[b-Digital-twin] P. Almasan et al., "Network Digital Twin: Context, Enabling

Technologies and Opportunities," in IEEE Communications

Magazine, doi: 10.1109/MCOM.001.2200012.

[b-ORAN] The O-RAN Whitepaper 2022 (RAN Intelligent Controller),

Rimedo Labs, https://rimedolabs.com/blog/the-oran-whitepaper-

2022-ran-intelligent-controller/

[b-ETSI GS ZSM 009-1] ETSI GS ZSM 009-1 V1.1.1 (2021-06) Zero-touch network and

Service Management (ZSM); Closed-Loop Automation; Part 1:

Enablers

[b-Huebscher 2008] Huebscher, C. and McCann, A. (2008) A Survey of Autonomic

Computing Degrees, Models, and Applications. ACM Computer

Survey, 40, Article No. 7.

http://dx.doi.org/10.1145/1380584.1380585

[b-NMRG] https://irtf.org/nmrg

[b-ETSI TS 129 500] ETSI TS 129 500 V15.0.0 (2018-07) 5G; 5G System; Technical

Realization of Service Based Architecture; Stage 3 (3GPP TS 29.500

version 15.0.0 Release 15).

https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/
https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/

