

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Technical Report
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(September 2025)

ITU-T Focus Group on AI Native for Telecommunication
Networks

Proof-of-Concept activities

Summary

This Technical Report provides details on the Proof-of-Concept activities under ITU-T FG-AINN

WG4. This report provides the technical summary of the activities done under PoC, and it covers the

following:

- Requirements for the Proof of Concept, including Build-a-thon.

- Description of the Proof of Concept and results.

- Learnings from PoC development mentoring sessions, including Build-a-thon

NOTE - This document includes details of PoCs done under Build-a-thon 1.0, 2.0, and part

of 3.0.

Keywords

AI agent, AI native networks, AI pipeline, Explainable AI, Intent, Knowledge Base, Proof of

Concept, telemetry, use case.

Contributors: Preksha Shah

Indian Institute of Technology Bombay

Mumbai, India

E-mail: 30005100@ee.iitb.ac.in

Liya Yuan

ZTE Corporation

China

E-mail: yuan.liya@zte.com.cn

mailto:30005100@ee.iitb.ac.in
mailto:yuan.liya@zte.com.cn

- 3 -

FG-AINN-O-014

Table of contents

1 Scope .. 4

2 References .. 4

3 Definitions ... 4

4 Abbreviations ... 4

5 Conventions ... 5

6 Introduction .. 6

7 General Requirements for the PoCs .. 7

8 PoC Description ... 7

9 PoC Details .. 7

10. Combined Learnings from Build-a-thon 1.0 and Build-a-thon 2.0 Mentoring Sessions 64

11. Bibliography.. 66

Annex I A.13 justification for proposed new ITU-T TR.POC-AINN "Technical Report -

Proof-of-Concept activities for AI Native Networks" ... 67

- 4 -

FG-AINN-O-014

Technical Report

Proof of Concept Activities

1 Scope

This Technical Report summarizes the Proof of Concept (PoC) activities developed under the

ITU-T FG-AINN initiative. It presents the technical details of AI-native network PoCs

contributed in alignment with the AI-native defining characteristics—namely, architecture

approaches for deep integration of AI, engagement of AI in all stages of the lifecycle, and AI

itself as a core component. The report also includes outcomes from collaborative activities such

as the Build-a-thon, and combined learnings from Build-a-thon mentoring sessions.

Each PoCs are mapped to (a) gaps, (b) use cases, and (c) architecture concepts.

2 References

[ITU-T Y.3102] ITU-T Recommendation Y.3102, “Framework of the IMT-2020 network,”

February 2018.

[ITU-T Y.3172] ITU-T Recommendation Y.3172, “Architectural framework for machine

learning in future networks including IMT-2020”.

[ITU-T Q.5001] ITU-T Recommendation Q.5001, “Framework for intelligence-aware

functional architecture of future networks including IMT-2020,” June 2020.

3 Definitions

None.

3.1 Terms defined elsewhere

None

3.2 Terms defined in this document

None

4 Abbreviations

AI: Artificial Intelligence

ANSP: AI-Native Service Platform

BTS: Base Transceiver Stations

CLI: Command Line Interface

CSI: Channel State Information

DQN: Deep-Q-Network

DWT: Discrete Wavelet Transform

E2E: End-to-end

ELA: Error Level Analysis

ETSI: European Telecommunications Standards Institute

FGAINN: Focus Group on AI Native for Telecommunication Networks

KB: Knowledge Base

KPI: Key Performance Indicator

LLM: Large Language Model

LSTM: Long Short-Term Memory

ML: Machine Learning

NLP: Natural Language Processing

NMS: Network Management Systems

ONOS: Open Network Operating System

- 5 -

FG-AINN-O-014

RAG: Retrieval-Augmented Generation

RAN: Radio Access Network

RSSI: Received Signal Strength Indicator

SLA: Service Level Agreement

UE: User Equipment

URA: Uniform Rectangular Array

URLLC: Ultra-Reliable Low Latency Communication

QoS: Quality of Service

XAI: Explainable AI

5 Conventions

In this Technical Report, in alignment with the conventions of [Supplement 55 to ITU-T Y- series

Recommendations] possible requirements which are derived from a given use case, are classified as

follows:

The keywords "it is critical" indicate a possible requirement that would be necessary to be fulfilled

(e.g., by an implementation) and enabled to provide the benefits of the use case. The keywords "it is

expected" indicate a possible requirement which would be important but not absolutely necessary to

be fulfilled (e.g., by an implementation). Thus, this possible requirement would not need to be enabled

to provide complete benefits of the use case.

The keywords "it is of added value" indicate a possible requirement which would be optional to be

fulfilled (e.g., by an implementation), without implying any sense of importance regarding its

fulfilment. Thus, this possible requirement would not need to be enabled to provide complete benefits

of the use case.

- 6 -

FG-AINN-O-014

6 Introduction

The evolution of future communication networks is increasingly driven by the integration of machine

learning (ML) and artificial intelligence (AI) capabilities across all layers of the network architecture.

As outlined in ITU-T Recommendations [ITU-T Y.3102] and [ITU-T Y.3172] the development of

intelligent, adaptive, and learning-enhanced network systems is central to achieving scalable, efficient,

and context-aware service delivery in next-generation systems such as IMT-2020 and beyond.

The [ITU-T Y.3172] framework introduces a modular and functional architecture for incorporating

ML in future networks, where ML pipelines support functions such as data collection, model training,

inference, and feedback loops.

Building on these foundational principles, the current study explores the design and implementation

of AI-native network functions and control loops that go beyond traditional automation. Rather than

layering AI capabilities on top of existing management systems, AI-native networks embed

intelligence directly into the fabric of network operations; interpreting user intents, coordinating

multi-agent decision making, optimizing closed-loop control, and autonomously adjusting to dynamic

network conditions. Shah P, et al. [b-Shah] carried out a gap analysis of existing frameworks in AI

native networks.

The proof-of-concept (PoC) studies presented in this report focuses on demonstrating such AI-native

capabilities across a diverse range of network scenarios. These includes distributed decision making,

intent-based and feature-specific applications, emergency & resilience-centric AI inference systems,

among others. Special emphasis is placed on leveraging standardized ML architecture components,

ensuring that implementations are interoperable, reproducible, explainable, and aligned with the ITU-

T Focus Group on AI Native for Telecommunication Networks (FGAINN) vision.

As AI-native networking continues to mature, these studies lay the groundwork for standard-

compliant, reference-grade implementations that embody closed-loop autonomy, real-time learning,

and AI-driven orchestration. According to [b-FG-AINN-O-08], AI-Native systems are defined by

three delimiting characteristics: (i) architecture approaches for deep integration of AI, (ii) engagement

of AI in all stages of the lifecycle, and (iii) AI itself as a core component. In the PoCs, these

characteristics are realized by embedding AI into the system fabric through native architectural

patterns (e.g., AI pipelines, service-based interfaces, and telemetry/data fabrics); ensuring AI

participation end-to-end across design, deployment, orchestration, runtime operation, and evaluation

of network components, functions, applications, and services; and elevating AI primitives to first-

class resources within the control, data, and management planes. Through this mapping, the PoCs

concretely demonstrate AI-native principles in practice.

The ITU-T FG-AINN organized three Build-a-thon challenges in 2025 to accelerate the development

and validation of AI-native networking solutions. Build-a-thon 1.0, conducted in June 2025, saw

participation from 23 registered teams, out of which 10 teams submitted final prototypes, and 6

winners were selected. To support the participants, six mentoring sessions were held from May to

June 2025. Build-a-thon 2.0, held during June–July 2025, was supported by five dedicated mentoring

sessions and concluded with the announcement of three winners. Build-a-thon 3.0 taking place

through Aug – Oct 2025. A series of seven mentoring sessions were conducted and concludes with

the announcement of winners.

The key outcomes from both Build-a-thon 1.0 and 2.0 include the demonstration of feasible and

impactful AI-native solutions for telecom networks and societal applications, as well as validation of

performance and functional requirements through executed test cases. The challenges also provided

deep insights into integration challenges, design trade-offs, and the implementation of modular,

interoperable architectures using AI pipelines and intent-based orchestration. Participants gained

hands-on experience in prototyping and cross-disciplinary collaboration, while their contributions—

ranging from use cases and architectural insights to PoC documentation and gap analysis—have

enriched FG-AINN’s technical work. These efforts have further strengthened the collaboration

between academia, industry, and standardization bodies, supporting the evolution of future AI-native

standards.

- 7 -

FG-AINN-O-014

This Technical Report is organized as follows: Section 7 outlines the general requirements for the

PoC, Section 8 provides the PoC description, Section 9 presents the PoC details, Section 10 discusses

the combined learnings from Build-a-thon 1.0 and Build-a-thon 2.0 mentoring sessions, and Section

11 concludes with the bibliography.

7 General Requirements for the PoCs

This clause describes the requirements for the PoCs.

Requirement
Description

Gen-Build-a-thon-PoC-001
It is critical that PoC development activity, builds upon a key concept

in FG AINN, especially aims to prove the concept practically with

code, test setup and demo setup.

Gen-Build-a-thon-PoC-002
It is critical that PoC development activity create well- documented

artifacts and opensource code.

Gen-Build-a-thon-PoC-003
It is critical that the maturity of the PoC is evaluated in test

scenarios in the accompanying documentation.

Gen-Build-a-thon-PoC-004
It is critical that PoC demonstrates the feasibility (or lack of it) of

specific architecture approaches.

Gen-Build-a-thon-PoC-005
It is critical that demonstration is focussed on a set of unique

scenarios.

Gen-Build-a-thon-PoC-006
It is expected that participants submit other use case implementations

in the same format as the reference examples.

Gen-Build-a-thon-PoC-007
It is expected that the PoC demonstrates the three delimiting

characteristics of AI Native: Architecture approaches for deep

integration of AI, engagement of AI in all stages of the lifecycle, and

AI itself as a core component [b-FG-AINN-O-08].

8 PoC Description

The scope of PoCs collected during Build-a-thon 1.0 was oriented toward exploring and validating

innovative concepts, emphasizing how AI-native technologies could be embedded into telecom

networks while also delivering broader societal value. The scope of PoCs collected during Build-a-

thon 2.0 extended this foundation by transforming preliminary ideas into mature realizations,

featuring working prototypes, practical software artifacts, and live demonstrations that showcased

their applicability in operational environments. The scope of PoCs conducted during Build-a-thon 3.0

is architecture-driven, focusing on designing and demonstrating scalable AI-native network

frameworks and their integration across system components.

9 PoC Details

This section includes details of each PoC, including PoC title, delimiting characteristic, description, gaps

addressed, test setup, code and data sets, simulated use cases, architectural concepts, demo and

evaluations, PoC observation and discussions, conclusions, and future work.

PoC-001 to PoC-010 were contributed during Build-a-thon 1.0, which primarily served as an

exploratory stage to study, validate, and refine a diverse set of forward-looking ideas on the integration

of AI-native technologies. These early contributions emphasized conceptual soundness, feasibility

analysis, and the identification of architectural touchpoints for embedding AI across the network

lifecycle.

- 8 -

FG-AINN-O-014

PoC-011 to PoC-014 were collected during Build-a-thon 2.0, where the focus shifted from ideation to

realization. In this phase, initial concepts were elevated into robust and demonstrable prototypes,

including code implementations, system integrations, and functional demonstrations. This progression

showcased not only the technical viability of AI-native networking principles but also their potential for

deployment in real-world scenarios, thereby bridging the gap between theory and practice.

Each PoC is tagged with its delimiting characteristic, like architecture approaches for deep integration

of AI, engagement of AI in all stages of the lifecycle, and AI itself as a core component.

- 9 -

FG-AINN-O-014

9.1.1 PoC-001 [b-FG-AINN-I-104_R1] AI-Native Proactive Network Slice Marketplace for

Dynamic Service Ecosystems

9.1.2. Delimiting Characteristic

AI integrated services and AI pipelines itself as a core component – because this PoC integrates an

AI agent as a core component which implements the service of slice selection.

9.1.3. Description

This PoC demonstrates an AI-native network slicing framework where Deep-Q-Network (DQN),

Long Short-Term Memory (LSTM), and Large Language Model (LLM) agents enable intelligent,

real-time decisions for vendor selection and slice optimization. It showcases integration with

open5GS and supports structured data exchange for adaptive orchestration. The figure shows AI-

Native Proactive Network Slice Marketplace.

Fig. 9.1.1: AI-Native Proactive Network Slice Marketplace

9.1.4. Gaps Addressed

This tackles the absence of intelligent, data-driven orchestration in network slicing by introducing AI

agents (e.g., DQN, LSTM, LLM) that automate decisions like vendor/resource selection and slice

configuration based on real-time application requirements and traffic behavior something traditional

static or rule-based systems fail to handle dynamically.

9.1.5. POCs Test Setup

This PoC is developed using Python-based simulation tools and Jupyter/Colab environments,

optionally extendable to AWS EC2. The traffic simulator emulates variable load scenarios, including

stadium surges and disaster responses, across >50 concurrent slice contexts. A supervised Random

Forest classifier maps traffic characteristics (latency, bandwidth, device count) to slice types, while a

DQN agent handles dynamic resource allocation. Vendor selection logic uses Open5GS-based

emulators to return latency/jitter-based slice offers, and an LLM (e.g., Ollama) validates slice

decisions against user intents. LSTM-based forecasting models anticipate traffic surges, feeding into

a feedback loop that enables self-tuning of slice templates, vendor trust scoring, and retraining. Real-

time metrics (latency, Service Level Agreement (SLA) violations, energy use) are logged and

visualized using Matplotlib/Seaborn. The simulation environment includes a Key Performance

Indicator (KPI) evaluation engine and a feedback module for continuous learning. Figure shows

workflow of AI native proactive network slice marketplace.

- 10 -

FG-AINN-O-014

Fig. 9.1.2: Workflow of AI native proactive network slice marketplace

9.1.6. Code and Data Sets

A synthetic dataset generator produces multi-dimensional traffic traces (eMBB, URLLC, mMTC),

augmented by public 5G datasets (e.g., https://www.osti.gov/biblio/1880776) to support realism.

Code and data sets can be found here: https://github.com/Harsh067899/Build-A-Thon-SRM.

9.1.7. Simulated Use cases

AI system enables real-time classification of traffic into eMBB, URLLC, or mMTC slice types based

on application demands. It dynamically selects the most suitable vendor slice template and adapts to

varying traffic loads, including emergencies and public events. Key scenarios include smart city

operations, emergency prioritization, and large-scale event management. This showcases proactive

AI-Agent driven network slicing aligned with SLA, latency, and energy goals.

9.1.8. Architectural concepts

This PoC introduces an architecture where AI agents (DQN, LSTM, LLM) are modular components

integrated alongside or within slice management functions (e.g., NSMF, NSSMF). These agents

interact with orchestrators through structured interfaces (e.g., JSON-based APIs) and are capable of

both inference and feedback handling, enabling real-time, adaptive slicing decisions. The architecture

supports closed-loop control, telemetry-driven inputs, and application-aware outputs, marking a shift

from static policy-driven orchestration to dynamic, AI-native management.

9.1.9. Demo and Evaluation

The demonstration covered five operational scenarios ranging from baseline benchmarking to

emergency response and smart city integration. Real-time traffic simulations were used to assess the

AI agent’s ability to pre-allocate resources, classify slices dynamically, and handle SLA violations

through reallocation. The success criteria focused on latency reduction, energy-aware resource usage,

and improved adaptability under dynamic load conditions. Evaluation relied on real-time and post-

simulation KPIs including SLA compliance, response time to traffic changes, and accuracy of slice

classification and forecasting. Information exchange between application and model, including SLA

constraints and traffic types, was logged in structured formats, enabling transparent KPI tracking. A

component classifies high-level client intents (e.g., latency/bandwidth needs) into 3GPP-aligned slice

https://www.osti.gov/biblio/1880776
https://github.com/Harsh067899/Build-A-Thon-SRM

- 11 -

FG-AINN-O-014

types (eMBB, URLLC, mMTC) using an ML model. This replaces static policy mapping with

dynamic, learning-based slice interpretation — foundational to AI-native orchestration

Fig. 9.1.3: Slice Allocation across use cases

A large language model (LLM) is used to evaluate and score vendor slice offerings based on soft

constraints like SLA, provisioning time, security, and pricing. It enables semantic, multi-factor, and

explainable slice decision-making beyond rigid rule-matching — a core AI-native advancement..

Fig. 9.1.4: Training data identification and visualization

An orchestrator component triggers vendor-side slice deployment automatically after scoring,

without manual intervention. Fig. 9.1.4 demonstrates full intent-to-slice lifecycle automation — a

step beyond 5G’s NF-centric deployment model.

- 12 -

FG-AINN-O-014

Fig. 9.1.5: System health and Active purposes

Simulated vendor agent deploys slice logic (Open5GS/UPF) and sends back a valid slice connection

profile (AMF/SMF/DNN, QoS). This standardizes the slice provisioning return flow and prepares

the UE connection interface — enabling multi-vendor interoperability.

Fig. 9.1.6: Vendor selection and best score identification

Fig. 9.1.6 shows an API securely delivers the vendor-generated slice profile to the client or UE,

enabling automatic session initiation. This replaces static NSSAI provisioning with dynamic, signed

configuration delivery — fulfilling AI-native slice bootstrapping.

- 13 -

FG-AINN-O-014

Fig. 9.1.7: AI Native agent status

Fig. 9.1.7 shows prometheus-based metrics simulate real-time latency, bandwidth, and availability

monitoring for deployed slices. This validates compliance post-deployment and closes the loop

between deployment and assurance — vital for trust-based networks.

Fig. 9.1.8: Context based identification and slice allocation from natural language

Fig. 9.1.8 shows an AI agent adjusts each vendor’s trust score based on real-time SLA violations or

success metrics from the NDT. Implements continuous learning and self-regulation — a defining

feature of AI-native networks per ITU/European Telecommunications Standards Institute (ETSI)

standards.

Together, these results showcase a complete AI-Native Network Slice Marketplace architecture,

where slice classification, vendor negotiation, deployment, monitoring, and adaptation are fully

autonomous and learning-driven. This system advances beyond static 5G models and illustrates core

building blocks for AI-native orchestration in 6G.

9.1.10. PoC Observation and discussions

This PoC successfully demonstrated integration of AI techniques like DQN (for vendor/resource

selection), LSTM (for traffic prediction using open5GS), and LLM agents (for monitoring and

reasoning via Ollama + Gemini). While the setup addressed key challenges around slice decision-

making and validation using real traffic, one key suggestion was to focus more on the information

exchange between the application and AI models, particularly in terms of data formats and schema

consistency (e.g., JSON, time-series). It was also recommended to clearly identify the AI agent's

position in the architecture, such as whether it resides within the NSSMF, NSMF, or as an external

entity interacting via standard interfaces. Another critical insight was the need to study closed-loop

monitoring and optimization, where feedback from systems (via LLM agents) is used to trigger real-

time adaptations. Enhancing the AI inference endpoint (orchestrator) to support such structured

input/output and feedback loops was also identified as a future enhancement.

9.1.11. Conclusion

PoC 1 effectively addresses the gap in dynamic slice management by introducing modular AI agents

and defining their interaction with core functions. It sets the foundation for closed-loop, application-

aware orchestration in future 6G networks.

9.1.12. Future Work

- 14 -

FG-AINN-O-014

• Testing in a real time 5G environment

To validate the effectiveness and practical viability of the AI-Native Proactive Network Slice

Marketplace, future research should focus on deployment and testing within an operational 5G

network setting.

• Integrating Explainable AI

Incorporating Explainable AI (XAI) into the AI-Native Proactive Network Slice Marketplace is

crucial to clarify why the AI models select certain network slice types in response to given traffic

patterns or enterprise requirements.

- 15 -

FG-AINN-O-014

9.2.1. PoC-002 [b-FG-AINN-I-136] Using AI to Reduce the 6G Standards Barrier for African

Contributors

9.2.2. Delimiting Characteristic

Architecture approaches for deep integration of AI – because this PoC reuses specific architecture

components from ITU-T Y.3061 and similar architectural components are used to deeply integrate

AI (as an enabler for multi-agent systems).

9.2.3. Description

PoC-002 introduces an AI-native system to empower African stakeholders in the 6G standardisation

process. It leverages a specialized LLM coordinated by four autonomous agents—responsible for gap

detection, analysis, standards recommendation, and compliance evaluation—operating on a

semantically indexed ITU dataset. This agent-driven pipeline automates and simplifies the process of

identifying and addressing gaps in existing standards.

9.2.4. Gaps Addressed

This PoC addresses key gaps in automating standards intelligence through embedded, modular AI. It

introduces application-aware processing of large standards corpora, autonomous agent lifecycle

management, and low-latency inference with broad generalization. By operating on a semantically

indexed dataset, it enables scalable, context-driven gap analysis. This architecture enhances inclusion

and agility in the 6G standards ecosystem, especially for underrepresented regions.

9.2.5 POCs Test Setup

This PoC runs on a modular, multi-agent AI architecture built using frameworks like AutoGen or

AnythingLLM, operating over a semantically indexed knowledge base created from ITU-T 6G

standards. The base is stored in a Pinecone vector database, allowing fast contextual retrieval.

Autonomous agents are assigned specialized tasks: gap detection (via Natural Language Processing

(NLP) parsing), standards recommendation, compliance verification, and code generation.

Documents are pre-processed with LLaMA 3.23B-based embeddings and chunked with metadata

annotations (e.g., interface IDs, region tags). Each test phase document ingestion, gap detection, and

regional filtering. These are tracked against functional success criteria such as correct parsing,

identification of ambiguous sections, and relevance to African infrastructure needs. All gaps and

proposed standards enhancements are logged with source excerpts, confidence scores, and region-

specific tags, enabling full traceability for validation and audit. Figure shows AI-Native Multi-Agent

Workflow for Gap Detection, Contribution Generation, and Compliance Validation in ITU-T 6G

Standards.

Fig. 9.2.1: AI-Native Multi-Agent Workflow for Gap Detection, Contribution Generation, and

Compliance Validation in ITU-T 6G Standards

9.2.6. Code and Data Sets

A curated and semantically indexed corpus of ITU-T standards and related 6G technical documents.

Code and data set available at https://github.com/AgabaEmbedded/Bridging-Standards-Gap.

9.2.7. Simulated Use cases

https://github.com/AgabaEmbedded/Bridging-Standards-Gap

- 16 -

FG-AINN-O-014

The system supports autonomous AI agents to analyze ITU-T 6G standards and identify specification

gaps, particularly for developing regions. It semantically links abstract technical terms to local

deployment challenges like power scarcity or rural infrastructure. Agents generate compliant proposal

drafts and sample code aligned with standards evolution. This enables inclusive, AI-assisted

contributions to global standardization efforts.

9.2.8. Architectural concepts

This PoC introduces a multi-agent AI architecture, where each autonomous agent performs a distinct

function in the standards engagement lifecycle: gap detection, contextual analysis, recommendation,

and compliance evaluation. The architecture is supported by a domain-specific LLM and a

semantically indexed standards corpus, creating an end-to-end pipeline for AI-assisted, standards-

aware collaboration.

9.2.9. Demo and Evaluation

The system was evaluated through three targeted tasks: semantic indexing of 6G standards,

autonomous gap detection, and AI-assisted draft contributions. Each task was demonstrated using a

curated document base, emphasizing the agent’s ability to interpret, extract, and act upon regulatory

and regional standardization needs. Controlled tests validated the completeness and accuracy of

document parsing, relevance filtering for African network issues, and the precision of proposed

enhancements. The evaluation focused on semantic search quality, the correctness of gap extraction,

and alignment of generated proposals with known domain challenges.

9.2.10. PoC Observation and discussions

A key observation from PoC-002 is the need to focus more explicitly on the construction, structure,

and utility of the knowledge base, which underpins the entire agent workflow. As a remote and the

only foreign team, ensuring clarity and reproducibility of the knowledge base is especially critical for

broader adoption and collaboration. It was suggested, notably by Marco, that the knowledge base

itself could serve as a foundation for automated gap analysis across ITU standards, reinforcing its

central role in enabling intelligent, AI-driven contributions to 6G standardisation. This highlights the

importance of making the knowledge layer more transparent, accessible, and well-documented.

9.2.11. Conclusion

This PoC demonstrates an AI-native approach to democratizing 6G standards development through

an agent-driven system powered by a semantically indexed ITU dataset. By automating gap detection,

analysis, and compliance evaluation, it lowers the entry barrier for underrepresented regions,

particularly in Africa. The modular design enables scalable, context-aware processing and sets the

groundwork for broader integration of AI in standards workflows. This PoC marks a significant step

toward inclusive, intelligent, and responsive 6G standardisation processes.

9.2.12. Future Work

• Scalability to Diverse Developing Regions: Future studies must prioritize the scalability and

adaptability of 6G solutions to the highly diverse contexts within developing regions.

Challenges include varied infrastructure maturity, significant language diversity, and

fluctuating levels of technical capacity.

• AI Ethics: Critical attention is required for the ethical implications of deploying AI-driven 6G

technologies. Future studies should address concerns related to data privacy, algorithmic bias,

transparency, and accountability, particularly when AI models interact with sensitive user data

and make decisions impacting connectivity and services.

- 17 -

FG-AINN-O-014

9.3.1. PoC-003 [b-FG-AINN-I-128] Aionet Build-a-thon 2025: AIONETx

9.3.2. Delimiting Characteristic

AI itself as a core component – because the PoC is not just embedding AI into the architecture, but

making AI the essential functional element that enables autonomous, on-device real-time control.

Without the AI classifiers and predictors, the system would not work; it is fundamentally AI-driven

rather than just architecturally integrated.

9.3.3. Description

PoC-003 is a lightweight, AI-native system that runs entirely on user devices to provide autonomous,

real-time control of mobile data usage. It classifies traffic, predicts app behavior, and dynamically

prioritizes bandwidth based on user-defined preferences and contextual factors like CPU load and

packet flow without relying on centralized infrastructure.

9.3.4. Gaps Addressed

This PoC addresses key gaps in user-centric traffic control, edge-level autonomy, and infrastructure

fairness. It fills the absence of application-aware, adaptive bandwidth management at the device level,

especially in constrained or underserved environments. By decentralizing intelligence, it supports

resilient operation under poor connectivity, and empowers users with informed control over data

usage—contributing to responsible digital consumption.

9.3.5. POCs Test Setup

This PoC is deployed locally on a Linux environment simulating an edge device, operating without

any cloud dependency. Scapy is used for real-time packet sniffing, psutil and subprocesses for CPU

and process-level monitoring, and iptables/tc for active bandwidth shaping. A rule-based AI agent

dynamically prioritizes flows based on CPU usage, packet type, port mapping, and user-defined

bonuses. Unknown apps are logged, visualized on a Flask dashboard (with Chart.js and SweetAlert2),

and handled through manual feedback stored in an encrypted SQLite database (AES-256). A heuristic

priority engine references a live aionet_priorities.json config file, which is auto-reloaded every 30

seconds to reflect admin updates. The entire system—including data capture, classification,

enforcement, and override is integrated and tested on a resource-constrained local stack, with

simulation of network degradation using tc netem and real-time telemetry logs retained for policy

validation and system tuning. Figure shows AIONET Workflow for Real-Time Traffic Monitoring,

AI-Based Prioritization, and Traffic shaping.

- 18 -

FG-AINN-O-014

Fig. 9.3.1: AIONET Workflow for Real-Time Traffic Monitoring, AI-Based Prioritization, and

Traffic shaping.

Collectively, the PoC setups in [1]-[3] implement a range of well-defined test environments, including

edge-based execution, standards document analysis, and AI-driven network orchestration. Each setup

emphasizes real-time telemetry collection, structured data logging, and system-level responsiveness,

demonstrating the applicability of AI agents in enabling proactive, context-aware network

management and standards support.

9.3.6. Code and Data Sets

Uses simulated real-time network traffic generated on the device for development and testing,

capturing fields like timestamp, protocol, source/destination ports, and packet size. Code and data set

available at https://github.com/Varsh-gr8/AIONET_ITU_build-a-thon2.0.git.

9.3.7. Simulated Use cases

In a constrained bandwidth scenario in this POC with concurrent Zoom, YouTube, and Google Drive

traffic, AI agent in AIONET ensured high-priority access for Zoom while moderately throttling

YouTube and delaying Drive sync. This behaviour, driven by real-time statistics and rule-based

classification, validated the effectiveness of edge-intelligent traffic management.

9.3.8. Architectural concepts

It demonstrates key design directions for AI-native, user-empowered edge systems. It emphasizes on-

device intelligence, real-time application-aware control, and autonomous bandwidth prioritization

without relying on network-side orchestration. This direction aligns with the broader vision of

decentralized, context-driven, and privacy-preserving AI-native networks, particularly for extending

connectivity benefits to underserved users.

9.3.9. Demo and Evaluation

The PoC was demonstrated on a local edge device simulating real-world applications and network

conditions. The AI agent monitored active traffic, assigned dynamic priorities, and enforced shaping

policies in real time via a local dashboard. Demonstration steps included simulated bandwidth

constraints, user overrides, and detection of unknown applications. The evaluation plan measured

throughput capacity, latency overhead, dashboard responsiveness, and shaping accuracy. Success

Rule-based AI agent

Packet

Monitoring

System

Monitoring (Live

Metrics)

Dash board

(Flask, Jinja2,

Chart.js, CSS)

Feedback

Stored(SQLite)

Flow Aggregation

Dynamic Priority

Computation

Traffic Shaping

Packet Dispatch

https://github.com/Varsh-gr8/AIONET_ITU_build-a-thon2.0.git

- 19 -

FG-AINN-O-014

criteria emphasized real-time adaptation, effectiveness of heuristic priority assignment, and offline

operability, validating AIONET’s suitability for privacy-sensitive, resource-constrained

environments.

9.3.10. PoC Observation and discussions

Key observations from PoC-003 highlight the need to explicitly define the dataset structure, including

packet fields (e.g., timestamp, protocol, source/destination ports, length), and demonstrate how it

supports dynamic and unknown packet formats. The ability to classify, tag, and adapt to new traffic

types is central to AIONET’s AI-native claim, yet must be clarified with examples of policy formats,

classification mechanisms, and how new rules are injected or updated at the edge. Additionally,

deeper explanation of traffic shaping policy deployment across UE and UPF would strengthen the

system's relevance to AI-native, decentralized network control. Addressing these would reinforce

AIONET’s potential to support real-time, evolving, user-driven networking at the edge.

9.3.11. Conclusion

It showcases a practical direction for AI-native networking by enabling autonomous, on-device traffic

control and prioritization based on user context and preferences. It highlights how lightweight,

decentralized intelligence can enhance digital inclusion and responsible consumption, especially in

connectivity-constrained environments. While not proposing a full architecture, it offers a strong

foundation for future exploration of user-driven AI in the non-radio domain.

9.3.12. Future Work

• Future Security Work:

• Integrate Flask-Login for session-based dashboard protection.

• Move to HTTPS with self-signed or CA-issued certificates.

• Validate and restrict config updates with hash-based integrity checking.

• Define a formal threat model for internal and external adversaries.

• Ethical AI Governance:

AIONET currently logs all traffic shapping and priority decisions, enabling retrospective audit of

priority assignments. Although rule adaptation is automated based on user feedback, administrators

are responsible for periodically reviewing logs via the dashboard to detect any unfair or biased

prioritization patterns. This human-in-the-loop oversight ensures transparency and fairness in

network traffic management, with plans to enhance automated bias detection in future updates.

• Future Study Directions

• Integration with Network Slicing

o Enable AIONET to interact with operator-side slice managers or SDN controllers for

coordinated QoS.

• Knowledge Graph-Based Policies

o Use knowledge graphs to infer user intent and translate it into adaptive traffic control

policies.

• Federated Edge Training

o Explore collaborative model training across devices using federated learning while

maintaining privacy.

• Standardized Metadata Models

o Contribute to industry-wide standards for traffic/session metadata used in AI-native

systems.

• Adaptive Threat Detection

o Integrate lightweight anomaly detection to identify misuse or hidden bandwidth drains.

• Mobile Optimization

o Optimize model and traffic shaping for mobile devices (Android/iOS) with varying

app permissions and APIs.

• Explainable AI (XAI) Interface

- 20 -

FG-AINN-O-014

o Design a dashboard that explains AI decisions using natural language or visual cues

to improve transparency.

• Formal Intent-to-Policy Mapping

• Develop a standardized framework that translates user intent into enforceable network policies

using AI + logic.

- 21 -

FG-AINN-O-014

9.4.1. PoC-004 [b-FG-AINN-I-133] Build-a-thon 2025: NETSPEAK

9.4.2. Delimiting Characteristic

Engagement of AI in all stages of the lifecycle— because this PoC embeds AI not just for one function,

but throughout the troubleshooting lifecycle; from interpreting complaints (input), to classifying

intents, to generating configurations, and finally validating results in a closed loop. The AI is actively

engaged end-to-end, enabling continuous improvement of the troubleshooting process.

9.4.3. Description

PoC-004 presents an AI-native troubleshooting assistant that interprets user complaints given in

natural language, classifies them into network intents, and automatically generates and executes

Command Line Interface (CLI) configurations. Using LLMs, Jinja2 templates, and tools like Netmiko

and Ansible, the system supports multiple vendors (e.g., VyOS, Cisco) and performs dynamic

validation via iperf and ping, creating a closed-loop, self-improving troubleshooting pipeline.

9.4.4. Gaps Addressed

This PoC addresses the lack of intelligent, intent-driven troubleshooting in network operations.

Traditional systems rely on manual diagnosis or rigid, pre-defined templates. PoC 4 fills this gap by

enabling context-aware automation, where user input in natural language leads to accurate

classification, vendor-specific configuration, and validation without expert intervention.

9.4.5. POCs Test Setup

The PoC is deployed in an EVE-NG-based emulated testbed containing Cisco IOS, pfSense, and

Juniper vSRX devices. A lightweight Flask-based orchestrator accepts natural language input from

CLI or Web UI, which is classified, resolved, and mapped to Jinja2 templates before being executed

via Netmiko. CLI outputs are validated, tested (e.g., using iperf and ping), and logged for continual

improvement. The backend stack includes Python, PyTorch, Flask, Netmiko, and Ansible, enabling

real-time inference, template rendering, and multi-vendor command execution. Test cases evaluate

intent interpretation, CLI generation accuracy, rollback handling, and dynamic augmentation through

documentation via RAG. Figure shows simulated network trouble shooting [4]

Fig. 9.4.1: Simulated network trouble shooting [4]

9.4.6. Code and Data Sets

The system uses a synthetic dataset of over 9,000 labeled complaints mapped to intent categories,

CLI actions, and vendor contexts. Additionally, curated metadata files (e.g., parse.py, policy.json,

- 22 -

FG-AINN-O-014

app_profiles.py) support structured inference and command generation. Code and data sets can be

found via https://github.com/rajudhangar100/netspeak_ui.

9.4.7. Simulated Use cases

The chosen use case simulates a user request to increase link capacity during an IPL match in zone 1

from 7pm to 9pm. The user provides a natural language input, which is classified by the system into

a structured intent including action (Increase Link Capacity), zone, time window, and service type

(Video Streaming). The template engine loads a VyOS QoS policy, fills it with contextual parameters

(e.g., eth1, video-stream, 800mbit), and the CLI generation module renders and validates the

configuration block for execution—demonstrating real-time, intent-to-configuration automation for

network optimization.

9.4.8. Architectural concepts

PoC-004 introduces an AI-native intent-to-action pipeline, comprising an NL parser, intent classifier,

CLI template generator, and multi-vendor executor. It integrates real-time feedback and validation,

enabling a self-improving, closed-loop system capable of handling diverse edge environments with

minimal manual effort.

9.4.9. Demo and Evaluation

The PoC demonstrates AI-native, intent-driven automation through a user scenario requesting

increased link capacity during an IPL match. A natural language input is classified using DistilBERT

into a bandwidth_prioritisation intent. The system resolves the zone-to-interface mapping (e.g., zone

1 → GigabitEthernet0/1), selects the appropriate Jinja2 template, and generates the CLI block

(bandwidth 1000000). The configuration is scheduled and deployed via Netmiko, with actions logged

in MongoDB. Post-deployment ping and iperf tests verify success, and rollback is triggered if needed.

The feedback loop stores outcomes for continuous learning, ensuring robustness, adaptability, and

compliance with AI-native principles.

9.4.10. PoC Observation and discussions

PoC-004 demonstrates a promising AI-native approach to automated network troubleshooting, but

several important areas for enhancement were identified. There is a need to systematically determine

and isolate CLI changes, supported by a structured CLI command dataset and refined Jinja templates

to improve accuracy across vendors like VyOS, Cisco, and Juniper. The relationship between network

state, domain knowledge, and generated configurations must be made more explicit, including how

intent is grounded in real-time network context. Additionally, future work should explore the

development of a human intent dataset, clarify base models used for NL parsing, and address

credential management and secure execution pipelines for automated CLI deployment. Finally,

implementing a closed-loop feedback mechanism is essential for monitoring the impact of changes

on KPIs.

9.4.11. Conclusion

This PoC demonstrates how AI-native techniques can automate complex, vendor-aware network

troubleshooting tasks by bridging natural language input with executable configurations. It reduces

dependence on human expertise, accelerates resolution, and lays the groundwork for intent-driven,

adaptive network operations at the edge.

9.4.12. Future Work

● Model Adaptability: Ensure the AI model generalizes across diverse network environments

and vendor-specific configurations.

● CLI Generation Accuracy: Prevent misconfigurations by refining dynamic template

generation and validation methods.

● Reinforcement Learning Integration: Implement real-time feedback loops to optimize

network adjustments continuously.

● Validation & Rollback Mechanisms: Develop robust safeguards to ensure deployed

configurations do not destabilize the network.

● Multi-Cloud & Hybrid Network Support: Expand compatibility with cloud-based

architectures and hybrid environments.

https://github.com/rajudhangar100/netspeak_ui

- 23 -

FG-AINN-O-014

● Security & Privacy Considerations: Address vulnerabilities, adversarial attacks, and ethical

concerns in AI-driven automation.

● Edge Execution Optimization: Enhance lightweight inference models for real-time execution

on routers and microcontrollers.

● Scalability & Performance Improvements: Focus on reducing latency, improving

classification accuracy, and automating network responses efficiently.

- 24 -

FG-AINN-O-014

9.5.1. PoC-005 [b-FG-AINN-I-130] Build-a-thon 2025: Explainable AI-Native Intent-Based

Self-Healing Network Orchestrator for Rural and Edge Telecom Infrastructure

9.5.2. Delimiting Characteristic

Engagement of AI in all stages of the lifecycle because the PoC applies AI across the entire fault

management lifecycle: from intent interpretation, to anomaly detection, to explainability, to

automated healing. Each stage depends on AI modules working in sequence within a coordinated

pipeline, making lifecycle-wide AI engagement the defining characteristic.

9.5.3. Description

This PoC addresses the rural connectivity crisis by designing an AI-native fault management system

for edge and resource-constrained telecom environments. It integrates intent-based operator input,

LSTM-based anomaly detection, explainable outputs, and rule-based healing agents coordinated via

a lightweight, modular pipeline. The system autonomously interprets faults, explains causes, and

triggers corrective actions with minimal operator intervention, aiming to drastically reduce recovery

times in rural infrastructure.

9.5.4. Gaps Addressed

This PoC addresses critical gaps in resilient, autonomous fault recovery for rural telecom networks.

Traditional Network Management Systems (NMS) systems are reactive, centralized, and lack

adaptability to edge environments. The proposed system overcomes these limitations by embedding

AI-native capabilities directly at the edge, enabling proactive, explainable, and context-aware fault

response in environments where manual intervention is slow or unavailable.

9.5.5. POCs Test Setup

The PoC is evaluated on an emulated 50-node rural telecom network, using synthetic datasets that

reflect realistic outage and traffic patterns. Model training is conducted locally using Python (Scikit-

learn/Keras), with LSTM-based anomaly detection and SHAP-based explainability. The multi-agent

healing architecture simulates MCP-style coordination via Python FSM agents, while network flows

are emulated in NS-3. Inference fallback is supported through a local RAG-style knowledge query

layer, and additional orchestration and 5G core integration are achieved via xOpera and Open6GCore.

The complete pipeline is planned for public release via the ITU AI/ML 5G Challenge GitHub. The

following figure shows the pipeline of control in the test setup.

- 25 -

FG-AINN-O-014

Fig. 9.5.1. The pipeline of control in the test setup.

9.5.6. Code and Data Sets

Synthetic time-series datasets simulating rural telecom metrics (throughput, latency, power quality,

link status, etc.) are generated using NS-3 and Python. These include annotated anomaly traces for

LSTM training (normal vs. degraded), curated edge-case failures (fiber cuts, voltage instability), and

semantic intent examples for translation. Code and datasets can be found here:

https://github.com/Rishi8520/rural_ai_selfhealing_net.

9.5.7. Simulated Use cases

This PoC validates AI-native fault detection and response through realistic edge network scenarios.

In the fiber cut simulation, a fault is injected between critical nodes (e.g., CORE-0 and CORE-1).

The LSTM-based anomaly detector identifies early degradation, explains the root cause using SHAP,

and initiates automated self-healing via coordinated agents. In the power fluctuation scenario, voltage

anomalies at nodes (e.g., DIST-2) are detected and proactively addressed using policy-based actions,

with and without knowledge base support to compare recovery effectiveness. A third case tests intent

translation, where an operator-defined policy (e.g., maintaining link uptime) is interpreted and

propagated across agents. The presence of the MCP-style coordination layer significantly improves

system responsiveness, demonstrating the impact of distributed intelligence and orchestration

efficiency in rural networks.

Architectural concepts The PoC introduces a modular AI-native orchestration pipeline

composed of:

• An intent interpretation layer that parses operator instructions.

• An LSTM-based anomaly detector for predictive fault detection and classification.

• A multi-agent coordination framework inspired by MCP (Multi-agent Control Plane)

principles to trigger rule-based healing.

• A lightweight inference engine with knowledge-based fallback at the edge, enabling

autonomy even under degraded connectivity.

https://github.com/Rishi8520/rural_ai_selfhealing_net

- 26 -

FG-AINN-O-014

The design emphasizes distributed intelligence, explainability, and fault resilience tailored to rural

deployments

9.5.9. Demo and Evaluation

This PoC is is developed and tested on a 50-node simulated network using NS-3 to emulate rural

broadband conditions and failure events such as fiber cuts and power fluctuations. The system

operates through a sequence of coordinated autonomous agents, each handling a specific function in

the fault management pipeline. The architecture includes a Monitor Agent for collecting real-time

metrics, a Calculation Agent powered by LSTM models for detecting anomalies, a Healing Agent

that uses Retrieval-Augmented Generation (RAG) and Gemini LLM to generate healing plans, and

an MCP Agent that propagates decisions across agents. Actions are then executed by the

Orchestration Agent using TOSCA templates and tools like xOpera, with communication managed

through ZeroMQ sockets under a central orchestrator. This setup enables the system to autonomously

process operator intents, detect issues using deep learning, provide SHAP-based explainability, and

coordinate corrective actions across agents. Evaluation metrics include detection latency, recovery

time, explanation fidelity, and intent propagation effectiveness, both with and without knowledge

base or coordination mechanisms. The modular, distributed agent design allows flexible testing of

AI-native orchestration capabilities under constrained edge conditions.

9.5.10. PoC Observation and discussions

This PoC presents an ambitious architecture, but observations suggest the need to narrow scope—

particularly for the Build-a-thon 1.0 test case—to ensure implementability and clarity. The role of AI

techniques (e.g., LLMs for healing and anomaly reasoning) and MCP/A2A coordination mechanisms

requires further articulation, especially in terms of data flow and interaction timing. A clear mapping

from NS-3 simulation (e.g., JSON outputs, node/link/path counts) to Monitoring Agent → MCP →

Calculation Agent → A2A → Healing Agent is needed to assess real-time adaptability. In particular,

the curation and schema design for RAG, and its use in Gemini-powered healing prompts, should be

detailed alongside KB structure and YAML-based configuration plans. Focusing on a sample

symptom and tracing its lifecycle—from anomaly detection to adaptive healing and reconfiguration—

can illustrate the agent coordination and AI-native feedback loop. To strengthen the implementation

pathway, it is recommended to prioritize fault isolation, explicitly document data/model requirements,

and provide a layer-wise architecture diagram showing the before-and-after system state transitions.

9.5.11. Conclusion

This PoC demonstrates how AI-native orchestration can transform fault management in rural and

edge networks. By combining anomaly detection, intent parsing, and agent-based healing in a

modular, explainable framework, the system enables faster recovery, reduces dependence on central

systems, and improves trust in autonomous operations. It lays the groundwork for scalable, fault-

tolerant rural infrastructure aligned with the goals of digital inclusion and 6G resilience.

9.5.12. Future Work

While our current proof-of-concept demonstrates intent-driven anomaly detection and autonomous

self-healing through explainable AI and lightweight agents, several open challenges remain for

further research and deployment at scale:

1. Scalability of Agents in Heterogeneous Networks: Our current rule-based multi-agent system

is effective in small to mid-sized topologies. Future work must explore how coordination and

communication between agents scale in large, diverse rural deployments involving different vendor

equipment and protocols.

2. Real-Time Constraints and Low-Latency Learning: Incorporating more complex ML models

(e.g., transformer-based intent interpreters or reinforcement learning agents) may improve flexibility

but introduces latency. Research is needed to balance explainability, speed, and predictive

performance in real-time networks.

3. Interfacing with Real Network Controllers ((Software Defined Networking (SDN)/Network

Function Virtualization (NFV)): Our orchestrator currently simulates healing actions. Integration

with real-world network control systems (e.g., OpenDaylight, Open Network Operating System

(ONOS)) will require protocol adaptation, security compliance, and stateful communication models.

- 27 -

FG-AINN-O-014

4. Edge Model Optimization and Federated Learning: In future iterations, we aim to deploy

distributed learning systems using federated or incremental learning to adapt models across

geographically dispersed nodes while preserving data privacy and connectivity independence.

5. Intent Disambiguation and Natural Language Generalization: Currently, our intent parser is

rule-based. A future goal is to integrate a fine-tuned language model for more flexible and user-

friendly intent interpretation, especially for multilingual operators or ambiguous commands.

6. Resilience to Adversarial Events and False Positives: The system must be stress-tested under

adversarial scenarios (e.g., spoofed telemetry, conflicting intents) to ensure robustness and prevent

cascading failures due to incorrect healing triggers.

These open problems provide an opportunity for iterative enhancement of our framework toward a

production-ready, standard-compliant AI-Native orchestration system suitable for rural and edge

telecom networks.

- 28 -

FG-AINN-O-014

9.6.1. PoC-006 [b-FG-AINN-I-135] Build-a-thon 2025: 5G Adaptive Signal Solutions for Rapid

Transit and Aerial Operations

9.6.2. Delimiting Characteristic

AI itself as a core component because the adaptive beam steering fully depends on AI to learn

mobility patterns and dynamically adjust antenna beams, making AI the essential element of the

system’s operation.

9.6.3. Description

This PoC proposes an AI-based adaptive beam steering mechanism designed for high-mobility

scenarios such as rapid transit systems, fleet management, and drone connectivity. The system

dynamically adjusts antenna beams by learning the motion of mobile stations using Received Signal

Strength Indicator (RSSI) derived from Channel state Information (CSI), ensuring that user

equipment (UE) remains within the optimal beam coverage (half-power beamwidth). The goal is to

enhance link reliability, minimize signal loss, and sustain continuous 5G connectivity in fast-moving

environments.

9.6.4. Gaps Addressed

Traditional beam steering methods are either slow to adapt or rely on pre-programmed patterns, which

are insufficient for highly dynamic use cases like fast-moving vehicles or drones. This PoC addresses

the gap by introducing real-time learning-based steering, enabling context-aware, low-latency beam

tracking. It tackles the limitations of static or delayed beamforming and aligns with the needs of AI-

based, mobility-optimized networks.

9.6.5. POCs Test Setup

The PoC is implemented using Sionna’s AI-native Radio Access Network (RAN) simulation

environment for PHY-layer modeling, with a Uniform Rectangular Array (URA) antenna and custom

beamforming modules. An evolutionary algorithm explores diverse beam configurations across user

positions and channel conditions, logging RSSI, CSI, and spatial parameters to generate a training

dataset. This dataset is used to pre-train a reinforcement learning (RL) agent, which is later fine-tuned

online using real-time feedback for adaptive beam tracking. The RL agent interacts with the RAN

simulator through RESTful APIs, supporting near-real-time decision exchange. The API design

reflects O-RAN architecture principles, with E2-like interfaces handling dynamic beam control and

A1-like interfaces managing policy updates. Figure shows flowchart of method for adaptive steering

for Rapid Transit and Aerial Operations.

Fig. 9.6.1: Flowchart of method for adaptive steering for Rapid Transit and Aerial Operations

9.6.6. Code and Data Sets

- 29 -

FG-AINN-O-014

A synthetic dataset was generated using the Sionna RAN simulator, capturing beam configurations,

Channel State Information (CSI), Received Signal Strength Indicator (RSSI), and spatial parameters

across varied UE positions and channel conditions. This dataset was used to pre-train the

reinforcement learning agent, enabling it to learn an initial beamforming policy prior to online fine-

tuning. The data generation was driven by evolutionary algorithms exploring the beam search space

under mobility conditions. Code and data sets can be found here: https://github.com/syed-azim-

git/Buildathon2.0-SSNECE.

9.6.7. Simulated Use cases

The simulation models a high-mobility wireless environment, such as urban transit or drone-based

communication, where a base station equipped with a Uniform Rectangular Array (URA) antenna

tracks and serves mobile UEs in motion. The UEs follow configurable trajectories, and their

positions—as well as channel conditions—change over time. The simulator generates real-time CSI

and RSSI measurements based on user movement, which are fed to the AI layer to dynamically adjust

beamforming weights. This setup allows testing the system’s ability to maintain signal quality and

connection continuity under fast-changing spatial and channel conditions.

9.6.8. Architectural concepts

The architecture integrates:

• Motion learning models for trajectory prediction.

• RSSI-CSI feedback loops for real-time environment sensing.

• Dynamic beam alignment logic executed at the antenna array controller or baseband unit.

• An AI-based control layer that adapts beam parameters without centralized intervention.

9.6.9. Demo and Evaluation

To evaluate the performance and robustness of the proposed dynamic beam steering algorithms, we

employed Sionna, an open-source, TensorFlow-based simulator developed by NVIDIA. Sionna

provides a highly flexible and accurate PHY-layer simulation framework, supporting digital twin

environments and advanced antenna modeling. Its capability to simulate realistic urban propagation

scenarios, combined with custom beamforming modules, made it well-suited for testing adaptive

beam steering strategies under diverse mobility and channel dynamics.

9.6.10. PoC Observation and discussions

The PoC highlights a strong integration between AI-driven beamforming and PHY-layer simulation;

however, there is a need to abstract the Sionna-specific components to generalize the approach for

RAN optimization across simulators. Clarifying the timing and placement of the genetic algorithm

(GA) for dataset creation and the online reinforcement learning (RL) agent for real-time adaptation

is important to improve reproducibility and modularity. The RESTful API interfaces between the AI

layer and the RAN simulator should be documented explicitly to ensure interoperability—enabling

replacement of Sionna with other tools while preserving functionality. Future enhancements could

focus on dataset creation workflows, YAML-based simulation configuration, and support for user-

defined BS/UE locations to enable broader experimentation. Drawing from the DeepSense 6G

Challenge, the team may extend the framework to other radio-layer learning problems. Finally,

formalizing the simulator’s configurable parameters and their representation in YAML would help

standardize testing across use cases and environments.

9.6.11. Conclusion

The PoC demonstrates how AI-based beam steering can improve 5G performance in highly mobile

scenarios by minimizing signal degradation and handover interruptions. By using real-time signal

metrics and learning models, it offers a responsive and context-aware solution that enhances

throughput, reliability, and service continuity in dynamic environments laying the groundwork for

resilient, intelligent transportation and emergency communication systems.

9.6.12. Future Work

• Beam steering option for UE tends to vary the speed of UE on the go.

• Energy Aware Decision making for Beam Steering

https://github.com/syed-azim-git/Buildathon2.0-SSNECE
https://github.com/syed-azim-git/Buildathon2.0-SSNECE

- 30 -

FG-AINN-O-014

9.7.1. PoC-007 [b-FG-AINN-I-132] Build-a-thon 2025: Invisible Guard – Passive Wi-Fi Sensing

for Smart Border & Building Surveillance

9.7.2. Delimiting characteristics

AI itself as a core component because the surveillance system relies entirely on AI models to interpret

CSI variations and recognize human motion, making AI the fundamental driver of functionality rather

than just an auxiliary tool.

9.7.3. Description

Invisible Guard is an AI-native, privacy-preserving surveillance solution that leverages passive Wi-

Fi Channel State Information (CSI) to detect human motion and anomalies without relying on

cameras, radar, or wearable devices. Using standard 802.11n/ac routers and compatible NICs (e.g.,

Intel 5300, Nexmon), the system captures fine-grained multipath variations in CSI caused by

environmental disturbances. These are processed by lightweight temporal deep learning models (e.g.,

GRU or 1D-CNN) to recognize motion signatures such as walking, running, loitering, or intrusions.

Designed for continuous, sensorless operation, the system is suited for resource-constrained, privacy-

sensitive zones like borders, critical infrastructure, and homes.

9.7.4. Gaps Addressed

Invisible Guard addresses a key network-layer gap by embedding AI-native perception into the

physical (PHY) layer using passive Wi-Fi CSI. It enables privacy-preserving, sensorless intrusion

detection at the network edge—where traditional systems rely on explicit sensors or centralized

analysis. This fills a critical void in AI-native architectures by supporting real-time, context-aware

anomaly detection directly through ambient wireless signals, enhancing observability and resilience

in distributed environments.

9.7.5. POCs Test Setup

The demonstration setup for Invisible Guard is entirely offline, designed to simulate real-time motion

detection using pre-recorded Wi-Fi Channel State Information (CSI) logs. Rather than relying on

physical hardware or live data collection, the system uses .pcap files containing CSI traces

representing four human activity classes—such as walking, running, loitering, and intrusion—

captured under controlled conditions. These files serve as the input for a structured preprocessing

pipeline. First, raw CSI amplitude and phase values are parsed from the .pcap format. To reduce noise

and enhance signal clarity, Discrete Wavelet Transform (DWT) is applied. The resulting clean signals

are then segmented into fixed-length temporal windows and normalized.

Depending on the model type, the pipeline either extracts statistical features like mean, standard

deviation, and entropy (for classical models like Random Forest), or directly passes time-series

windows to deep learning models such as Bi-LSTM or GRU, which are better suited for capturing

sequential dependencies in the data. These models are pre-trained and saved to disk, and during the

demonstration, they are loaded into a Python-based Jupyter Notebook environment. Using libraries

like TensorFlow and Scikit-learn, inference is performed on each input segment. The output includes

the predicted activity class and an associated confidence score, which is dynamically visualized in

the notebook interface. This setup offers a reproducible and privacy-preserving alternative to

hardware-based surveillance, effectively showcasing AI-native anomaly detection through ambient

wireless signals in a simulated but realistic setting. Figure shows flowchart of workflow.

- 31 -

FG-AINN-O-014

Fig. 9.7.1: Flowchart of workflow

9.7.6. Code and Data Sets

Uses an offline, simulated dataset derived from passive Wi-Fi Channel State Information (CSI) logs

stored in .pcap format. The dataset includes four labeled human activity classes: Empty, Sitting,

Standing, and Walking. Code and data sets can be found at

https://github.com/himanshukhatri1511/ITU.

9.7.7. Simulated Use cases

The PoC simulates human activity detection (empty, sitting, standing, walking) using pre-recorded

Wi-Fi CSI data. It mimics real-world intrusion scenarios in secure areas without using cameras or

sensors, demonstrating AI-native, privacy-preserving surveillance via signal pattern changes.

9.7.8. Architectural concepts

Invisible Guard introduces an AI-native edge architecture where CSI data from Wi-Fi NICs is

processed locally using lightweight deep learning models (1D-CNN/GRU) for real-time motion

detection. It enables privacy-preserving, sensorless anomaly detection by embedding intelligence at

the PHY layer, supporting distributed, context-aware surveillance without centralized sensors or

cameras.

9.7.9. Demo and Evaluation

The demonstration and evaluation of Invisible Guard are conducted entirely within a Jupyter

Notebook environment, showcasing a fully offline, hardware-free AI-native activity classification

system. Pre-trained models—including Bi-LSTM, GRU, and Random Forest—are loaded from disk

and applied to a test dataset derived from preprocessed Wi-Fi Channel State Information (CSI) logs

https://github.com/himanshukhatri1511/ITU

- 32 -

FG-AINN-O-014

originally stored in .pcap format. These logs have been parsed and segmented into temporal windows,

each labeled with one of four activity classes: Empty, Sitting, Standing, or Walking.

For each input window, the system performs inference and outputs a predicted activity class along

with a confidence score, both of which are dynamically visualized in real-time through prediction

traces and confusion matrices. This offline simulation allows complete reproducibility and systematic

evaluation without the need for live CSI capture or physical testbeds. As you can see from the Result

summary table below, the proposed models have achieved high classification accuracy, validating the

effectiveness of offline CSI-based activity detection. The GRU model stands out with an accuracy of

~98.96%, offering the best balance between performance and computational efficiency. Bi-LSTM

and LSTM also perform strongly, with accuracies of ~97.99% and ~97.85% respectively,

demonstrating their capability to model complex temporal patterns. In contrast, traditional methods

like Random Forest and SVM show significantly lower accuracy, reinforcing the advantage of deep

learning approaches for this task.

Model Accuracy (%) Notes

GRU ~98.96% Best trade-off between speed and accuracy

Bi-LSTM ~97.99% Best for transitional and complex sequences

LSTM ~97.85% Strong performance with engineered features

Random Forest ~72.85% Baseline sequence model

SVM ~67.25% High dependency on preprocessing

9.7.10. PoC Observation and discussions

This PoC presents a novel AI-native surveillance framework using passive Wi-Fi CSI for human

activity detection. However, several critical aspects require refinement to align the PoC more closely

with AI-native networking principles. First, the application layer model, human activity detection,

must be explicitly mapped to the underlying RAN, indicating what information from the RAN (e.g.,

CSI, UE authentication data) is being utilized and how that supports inference services. Additionally,

the PoC should clearly define its inference endpoints (e.g., alerts or system flags) and outline the

network-level requirements or interactions necessary to support real-time detection and response.

The dataset used is offline and derived from .pcap CSI logs; this should be more explicitly stated

along with the model types (Bi-LSTM, GRU) and their execution environment. The absence of

information regarding hosting and training (e.g., cloud, edge, or on-device) leaves a gap in

understanding the scalability and deployment feasibility. Moreover, while the project operates as a

cooperative sensing scheme, its ISAC (Integrated Sensing and Communication) relevance could be

further clarified by specifying how ambient UEs contribute to signal diversity or coverage. Finally,

the need for a layered interface view clearly showing the app, AI, and network layers—remains

unaddressed and would greatly aid in evaluating system integration and operational scope.

9.7.11. Conclusion

Introduces a CSI-powered HAR framework that demonstrates the viability of non-invasive, privacy-

friendly, and hardware-free activity detection. Through the use of Bi-LSTM, GRU, and Random

Forest, we achieve superior classification accuracy and computational flexibility across various

model types.

By removing the need for live data capture and simulation, we ensure that our system remains portable,

reproducible, and simple to deploy. The success of our models in static CSI environments confirms

the potential for practical applications in smart homes, healthcare, and ambient IoT systems.

Moreover, the active development of multi-user detection, embedded deployment, and transformer

integration lays the groundwork for a new generation of real-time, scalable HAR systems rooted in

signal intelligence.

9.7.12. Future Work

1. Multi-user HAR using multi-label classifiers, signal decomposition (ICA), and MIMO-based

spatial differentiation.

2. Generalization to variable room layouts and device positions using transfer learning and domain

adaptation.

- 33 -

FG-AINN-O-014

3. GRU deployment on Raspberry Pi/ESP32, using quantized models with CSI from Nexmon

firmware.

4. Transformer-based modeling to enhance long-range temporal pattern recognition via self-attention

mechanisms.

- 34 -

FG-AINN-O-014

9.8.1. PoC-008 [b-FG-AINN-I-131] An advanced emergency response platform

9.8.2. Delimiting Characteristic

Engagement of AI in all stages of the lifecycle, because AI is applied across the entire emergency

response lifecycle—detecting anomalies, triggering alerts, optimizing ambulance routes,

reconfiguring networks in real time, and restoring operations—showing continuous AI engagement

from incident onset to resolution.

9.8.3. Description

This PoC introduces an AI-native emergency response system tailored for urban individuals,

particularly those living alone. It orchestrates real-time health anomaly detection, emergency alerting,

location tracking, ambulance dispatch, and continuous patient-health monitoring during transit. At

the core, the system uses AI/ML algorithms for dynamic ambulance route optimization and real-time

O-RAN network reconfiguration to guarantee end-to-end (E2E) Quality of Service (QoS) for

emergency communication flows. Once the emergency is resolved, the system autonomously reverts

network resources to normal operations.

9.8.4. Gaps Addressed

The PoC addresses the lack of real-time, intent-driven E2E QoS provisioning in emergency scenarios.

Existing networks do not dynamically prioritize health-critical traffic or support AI-based decision-

making for routing or RAN resource adaptation. The proposed system fills this gap through intelligent

orchestration across layers, enabling ultra-reliable low-latency communication (URLLC) during

healthcare emergencies.

9.8.5. POCs Test Setup

The test setup integrates O-RAN-based AI-native infrastructure with simulated healthcare and traffic

environments. The OAIC platform is used to deploy a multi-container near-RT RIC running

Dockerized xApps, each handling specific AI tasks. These xApps interact over E2AP/E2SM

interfaces and leverage pretrained models exported via ONNX. The simulated radio access network

uses ns-O-RAN, combining the ns-3 mmWave module with FlexRIC for dynamic control. UE

mobility is emulated using SUMO with real-world maps from OpenStreetMap. The core network

functionality is provided by Open5GS, completing the end-to-end network. Two AI pipelines—one

for health emergency prediction (based on critical care datasets) and another for ambulance route

optimization (trained on traffic flow data)—run within the xApps. All inference is performed locally,

and emergency-related data is prioritized using a dedicated QoS management xApp.The figure given

below is the sequence diagram that represents the workflow of AI-enabled emergency healthcare

response using O-RAN architecture, xApps, MEC, and model repositories.

- 35 -

FG-AINN-O-014

Fig. 9.8.1: sequence diagram that represents the workflow of AI-enabled emergency healthcare

response using O-RAN architecture, xApps, MEC, and model repositories.

9.8.6. Code and Data Sets

The PoC utilizes a combination of real-world and synthetic datasets to support both health condition

prediction and traffic-aware ambulance routing. For patient modeling, the Healthcare critical care

Healthcare_dataset provides vital signs and diagnosis records used to train the health emergency

classification model. For traffic simulation and route optimization, OpenStreetMap (OSM) is used to

extract real-world road and infrastructure data, which is ingested by Synthetic Mobility Traces

(SUMO generated) to generate synthetic mobility traces of ambulances and vehicles. These datasets

collectively enable a realistic and context-aware AI-driven emergency response system. Code an

ddata sets can be found here: https://github.com/shaista2509-

sk/OMACS_EMERGENCY_HEALTHCARE_SYSTEM.git.

9.8.7. Simulated Use cases

The demonstrated use case simulates a real-time emergency health event triggered by a user via a

mobile app. Upon pressing the emergency button, the system performs multiple coordinated actions:

it analyzes the user's medical history to classify the type of emergency, locates the user, alerts nearby

hospitals and ambulances, and identifies the fastest ambulance route using live traffic data.

Simultaneously, the network is dynamically reconfigured via the RIC to ensure low-latency, high-

priority communication for all emergency-related flows. As the UE moves (simulated via SUMO),

the system handles handovers and maintains QoS guarantees. Once the patient is safely transferred

and treated, the network autonomously de-prioritizes emergency traffic, restoring normal operation.

This use case validates the effectiveness of AI-driven, intent-based orchestration in an O-RAN

framework for critical healthcare services.

9.8.8. Architectural concepts

The architecture integrates the following key layers:

• Application Layer: User interface for emergency activation and real-time tracking.

• AI/ML Layer: Models for health anomaly detection and ambulance route optimization.

https://github.com/shaista2509-sk/OMACS_EMERGENCY_HEALTHCARE_SYSTEM.git
https://github.com/shaista2509-sk/OMACS_EMERGENCY_HEALTHCARE_SYSTEM.git

- 36 -

FG-AINN-O-014

• O-RAN Network Control Layer: Dynamic E2E QoS enforcement and real-time network

reconfiguration via RIC (RAN Intelligent Controller).

• Communication Layer: Continuous data relay between user device, ambulance, and hospital.

The system establishes closed-loop control from application intent (health emergency) to network-

level prioritization and restoration.

9.8.9. Demo and Evaluation

The PoC demonstrates a real-time emergency health response scenario triggered by a user pressing

an emergency button within a mobile app. This activates two AI models running as xApps on the

OAIC/O-RAN platform. The first model, deployed via ONNX at the MEC, predicts the user's likely

medical condition based on historical healthcare data and broadcasts alerts to hospitals and

ambulances. In parallel, the second model identifies the most optimal ambulance route using live

traffic data. The system employs an xApp for end-to-end QoS resource management to prioritize all

emergency-related communication. The OAIC RIC simulator emulates user mobility and network

conditions, enabling a realistic test of AI-native orchestration. As per initial tests, the RIC successfully

provisions low-latency slices for critical telemetry (TC-1), while the AI-based routing model reduced

ambulance ETA (TC-2) and maintained responsiveness under traffic load by scaling inference

dynamically (TC-3). Final integration is ongoing, but each test case demonstrates the system’s

potential to support life-saving, intelligent emergency interventions over AI-managed O-RAN

infrastructure.

9.8.10. PoC Observation and discussions

The demo presents a compelling emergency response use case, but to reinforce its AI-native network

integration, several aspects should be clarified. Specifically, the demo should explain how AI

pipelines (e.g., ONNX models) are deployed at the edge with low latency, and what network

enhancements (e.g., support for federated inference or container orchestration via TOSCA) are

required. The need for cross-domain data sharing between healthcare, transport, and telecom—must

be emphasized, showing how different xApps consume and act on diverse datasets. Additionally,

clearer definition of UE app to network interfaces (e.g., how an emergency intent triggers slice

creation or QoS adjustments) is needed. Finally, highlighting shared knowledge bases or application-

aware policies would better demonstrate AI-native orchestration capabilities in a modular, scalable,

and access-agnostic manner.

9.8.11. Conclusion

This PoC validates the feasibility of using AI-native orchestration to manage emergency healthcare

workflows across user devices, ambulances, and hospitals. By ensuring fast anomaly response,

dynamic resource allocation, and seamless E2E communication, it establishes a blueprint for intent-

aware, QoS-guaranteed 6G emergency services. The demonstrated improvements in latency,

throughput, and recovery time highlight the critical role of AI-integrated O-RAN in future public

health infrastructures.

9.8.12. Future Work

1. Sharing sensitive patient data with MEC nodes or central servers poses privacy concerns.

Future work should explore federated learning approaches, where models are trained across

decentralized nodes (e.g., hospital servers) without moving raw patient data. This ensures compliance

with data protection regulations like HIPAA or India’s DPDP Act.

2. In multi-region deployments, a single near-RT RIC may not suffice. Future research is needed

on how to dynamically place, migrate, or replicate xApps across distributed RIC instances based on

location, load, or priority of emergency events, without disrupting E2 QoS.

Clinicians and first responders require interpretable results when life-critical decisions are made by

AI models. There is an open challenge in integrating explainable AI (XAI) techniques into your

xApps, so they can provide reasoning for diagnoses or route suggestions.

- 37 -

FG-AINN-O-014

9.9.1. PoC-009 [b-FG-AINN-I-134] Truth Shield: Real-Time AI-Powered Fake News Control

System

9.9.2. Delimiting Characteristic

Architecture approaches for deep integration of AI because the system embeds AI through

orchestrated pipelines and service-based architectural patterns, dynamically deploying multimodal

AI tools and integrating verification services, which reflects a deep architectural integration of AI

rather than a single-stage or isolated use of AI.

9.9.3. Description

Truth Shield is an AI-native, real-time misinformation detection and mitigation system designed for

deployment during high-risk events like pandemics, political unrest, or national security incidents. It

monitors digital communication across public platforms including WhatsApp groups, Telegram

channels, Twitter feeds, and online news sources analyzing multimodal data (text and images) using

AI pipelines. The system performs live cross-verification with official databases, OSINT sources, and

trusted news APIs. Built on AI-native service orchestration principles, Truth Shield allows YAML or

prompt-based use case configuration and dynamically deploys the necessary AI tools (e.g., GPT-

based verification, CLIP for image-text alignment). It ensures proactive misinformation control

through alerts to network operators and public warnings to users.

9.9.4 Gaps Addressed

Conventional network infrastructures lack the capacity to manage real-time, AI-driven content

verification or prevent misinformation propagation. There is no native support in the network layer

for triggering verification workflows, adjusting traffic priorities based on content risk, or coordinating

mitigation actions across media platforms. Truth Shield addresses this gap by introducing AI-native

hooks that integrate content analysis models directly with network functions. It prioritizes threat-

related traffic using QoS management, informs operator systems via standardized APIs, and offers

programmable interfaces for cross-domain data ingestion—filling the critical void in misinformation-

aware network intelligence.

9.9.5. POCs Test Setup

The test setup for Truth Shield is designed as a modular, AI-native pipeline capable of handling real-

time ingestion and analysis of multimodal content (text and images). The core infrastructure is built

on a microservice architecture, where each agent—responsible for tasks like claim ingestion,

preprocessing, classification, verification, and alerting—operates as a self-contained module,

coordinated via a central orchestrator. The AI models (e.g., BERT, RoBERTa, CLIP) are trained and

deployed on a private internal cloud with ONNX compatibility for efficient inference. Input claims

are collected via WhatsApp using Twilio integration, processed through multiple AI agents, and

finally responded to with a verified result. The entire system is deployed in a Dockerized environment

and exposed via ngrok for remote demonstration. Additionally, a feedback loop allows users to

respond to verdicts, enabling future improvements through model retraining and knowledge base

refinement. Figure shows scene map.

- 38 -

FG-AINN-O-014

Fig. 9.9.1: Scene map

The following figure shows the pipeline of control in the test setup.

Fig. 9.9.2: The pipeline of control in the test setup.

9.9.6. Code and Data Sets

The dataset used in Truth Shield consists of real-time news and social media data feeds, collected via

public APIs and telecom network taps. This data provides a continuous stream of multimedia content,

such as text claims and images, which serves as input to the AI pipeline. The code and data sets can

be found here: https://github.com/Eswarpnbs/Fake-News-Detection.

9.9.7. Simulated Use cases

In the simulated demonstration, a user sends a potentially false news claim via WhatsApp such as a

viral text about a political event or an image implying violence. This input is captured by the Multi-

Modal Ingestion Layer and passed through a real-time processing pipeline. The text is analyzed using

a fine-tuned BERT model, while the image is checked for authenticity using OCR, CLIP-based

similarity scoring, and image integrity tools like ELA (Error Level Analysis). The system cross-

verifies the claim with reliable news sources and government databases using semantic similarity and

source trust scoring. Based on the outcome, the user receives a verdict (Real or Fake) along with an

explanation. If the claim is deemed highly misleading, the system is configured to auto-trigger a

telecom alert, simulating an operator-level mitigation workflow. The goal is to demonstrate the end-

to-end responsiveness and accuracy of the AI-native misinformation control platform in a fully

virtualized testbed.

9.9.8. Architectural concepts

Truth Shield is structured around an AI-Native Service Platform (ANSP) architecture, comprising

modular agents that interact over standard interfaces. It includes: (1) a Data Ingestion Agent for

collecting user claims and media; (2) a Multimodal AI Agent equipped with image classifiers, text

transformers, and cross-modal models (like CLIP) for detection; (3) a Knowledge Correlation Agent

that references external verified datasets; and (4) a Policy Orchestrator that determines mitigation

actions. These components are orchestrated through a YAML-based service definition, containerized

using Docker, and deployed on AI-aware network edge infrastructure. The system supports

https://github.com/Eswarpnbs/Fake-News-Detection

- 39 -

FG-AINN-O-014

integration with telecom operator functions (e.g., via SBI or MEC APIs) to trigger fake news alerts

or resource adjustments.

9.9.9. Demo and Evaluation

This PoC showcased real-time ingestion and analysis of user-submitted content—text or images—

via a telecom-integrated interface (Twilio WhatsApp). The AI pipeline, composed of modular agents,

processed the inputs and delivered verdicts (real, fake, or unverifiable) along with confidence scores

and supporting evidence. The setup used pre-trained transformer models (BERT, RoBERTa), fine-

tuned for regional relevance, and deployed via Docker microservices. Alerts were triggered based on

classifier confidence, and user feedback was captured to refine source credibility. The system ran

entirely over a simulated telecom environment and demonstrated accurate, low-latency

misinformation detection in a reproducible, agent-based orchestration.

9.9.10. PoC Observation and discussions

The Truth Shield PoC effectively demonstrates the AI pipeline for multimodal misinformation

detection but must better articulate its integration with the network infrastructure. One key

observation is the lack of an explicit interface with network elements such as Content Delivery

Networks (CDNs), which could be leveraged for model hosting, regional caching, and real-time

inference services. The architecture should explore the use of semantic communications, enabling the

network itself to participate in content verification workflows.

To enhance the AI-native character of the solution, there is a need to define interfaces for model

transfer, data exchange, and federated learning, particularly toward CDN or edge computing layers.

These models—BERT, CLIP, or other LLMs—can be fine-tuned centrally but hosted at the edge or

CDN nodes to support low-latency inference.

Moreover, the proposal would benefit from treating "Inference-as-a-Service" as a native network

function, where semantic verification becomes part of the communication pipeline. The demo should

also visualize this link by showing how alerts or model decisions are routed via telecom or CDN

pathways and clearly state what network capabilities are assumed or required (e.g., MEC support,

low-latency data path, secure model hosting).

Concepts like Mixture-of-Experts, federated learning for regional model customization, and closed-

loop monitoring should also be explored as potential AI-native extensions that would deepen the

integration between AI agents and the underlying network fabric.

9.9.11. Conclusion

Truth Shield demonstrates the potential of AI-native networked systems to safeguard information

integrity during critical events. By embedding content verification capabilities into the network layer,

it transforms passive infrastructure into an active participant in misinformation control. The system

promotes public trust, supports government and operator response mechanisms, and ensures

resilience in digital communication ecosystems. With scalable AI pipelines and access-agnostic

design, Truth Shield can be adapted to different regulatory, regional, or platform-specific needs

serving as a blueprint for future AI-native digital governance tools.

9.9.12. Future Work

Building on the current capabilities of Truth Shield, future work will focus on designing a semantic

communication protocol to allow more efficient and context-aware message exchanges between

agents and systems. Additionally, the platform will be expanded to support multilingual and regional

content, enabling detection and validation of misinformation across diverse languages and local

dialects. Finally, we plan to integrate Truth Shield with government alert systems and emergency

communication infrastructure, allowing verified responses to be disseminated at scale through official

channels during critical events.

- 40 -

FG-AINN-O-014

9.10.1. PoC-010 [b-FG-AINN-I-129] Build-a-thon 2025: Intelligent Network Traffic Capacity

Prediction for BTS

9.10.2. Delimiting Characteristic

AI itself as a core component because the forecasting system fundamentally depends on deep learning

models and an integrated LLM to perform prediction and reporting, making AI the indispensable

driver of both network optimization and operator-facing insights.

9.10.3. Description

This PoC presents a real-time, AI-native system for forecasting cellular traffic at Base Transceiver

Stations (BTS) using deep learning techniques. The system ingests historical BTS counter logs—

representing real traffic activity over time—and applies hybrid neural architectures such as LSTM,

GRU, and RNN to detect and predict short-term load fluctuations. To improve contextual sensitivity,

the models are enhanced with engineered features such as day-of-week, holiday indicators, and

peak/off-peak flags. Additionally, the Gemini LLM is integrated to convert predicted peaks into

human-readable reports, aiding in operational planning.

The system is designed to run continuously with minimal latency and is optimized for deployment at

the network edge (e.g., MEC or CDN layer). This enables telecom operators to proactively manage

congestion, balance network load, and ensure optimal Quality of Service (QoS). The solution operates

without the need for external sensors or traffic analyzers and aligns with the FG-AINN vision for

embedded, intelligent network management.

9.10.4. Gaps Addressed

The current telecom infrastructure largely depends on reactive mechanisms and static thresholds for

traffic load balancing, which are insufficient in handling dynamic, context-driven user behavior—

such as sudden surges during festivals, emergencies, or location-specific events. There is a significant

gap in integrating predictive intelligence within the RAN, particularly at the BTS level, where early

detection of congestion could allow proactive action. Moreover, there is no embedded mechanism for

contextual interpretation of traffic patterns, nor is there support for translating technical forecasts into

operational insights in real time. Existing systems also lack interfaces for deploying AI models

natively within the network, such as at the MEC or CDN layer, and offer limited support for real-time

inference, semantic reporting, or closed-loop decision making. This PoC addresses these gaps by

demonstrating an AI-native, edge-deployable forecasting pipeline that is adaptive, interpretable, and

tightly integrated with network operations.

9.10.5. POCs Test Setup

The setup involved constructing a forecasting pipeline using historical BTS counter data enriched

with contextual signals such as time-of-day, weekend flags, and event indicators (e.g., festivals).

Where real air-interface data was not available, counters were synthetically generated using

established mathematical relationships to emulate realistic transport and radio-layer traffic patterns.

Signal preprocessing included windowed segmentation and normalization of traffic deltas. The

models LSTM, GRU, and RNN were trained individually and also as ensemble sequences (e.g.,

LSTM → GRU → LSTM) with dropout regularization to prevent overfitting. A Gemini-based large

language model (LLM) was added to automatically interpret the peak prediction output and generate

user-readable traffic management reports. The system was deployed on a standard CPU setup with a

Streamlit-based GUI allowing users to upload datasets, select models, tune hyperparameters, and

visualize predictions dynamically. Fig. 9.10.1 shows user centric work flow for AI-based traffic

prediction.

- 41 -

FG-AINN-O-014

Fig. 9.10.1: User centric work flow for AI-based traffic prediction

Peak Detection Algorithm

9.10.6. Data Sets

Two types of data were utilized:

1. Historical BTS Counter Data - Simulated hourly traffic logs reflecting voice/data sessions

with contextual flags (e.g., weekend, holiday).

2. Air Interface Metrics - Synthetic counters mathematically generated using standard signal-

level relationships, capturing dynamic wireless behavior under varying load conditions.

9.10.7. Simulated Use cases

The PoC simulated a real-world telecom scenario where Base Transceiver Station (BTS) traffic

fluctuates based on time-of-day patterns, weekends, and special events like festivals. The setup

- 42 -

FG-AINN-O-014

emulated both transport-layer counters and air-interface metrics to predict traffic congestion, enabling

preemptive load balancing and QoS adjustments.

9.10.8. Architectural concepts

The architecture comprises a modular, edge-ready AI pipeline tailored for telecom-grade BTS traffic

forecasting. Historical traffic counter data is ingested from the BTS and preprocessed to remove noise,

normalize values, and extract engineered features such as time-of-day, day-of-week, and holiday

indicators. This enriched time-series data is then fed into deep learning models—such as LSTM, GRU,

and RNN—trained to detect temporal dependencies and forecast short-term network load. The output

of these models is further processed using a Gemini-based language model that automatically

converts peak traffic predictions into natural language reports for operational teams. All components

are containerized and designed for deployment at the network edge using platforms like MEC or RIC-

integrated xApps, ensuring low-latency inference. A real-time dashboard visualizes predictions and

alerts, while the system operates continuously to support intelligent load balancing and proactive QoS

management.

9.10.9. Demo and Evaluation

The demonstration simulated near real-time traffic prediction at a BTS, using either historical or

synthetically generated input. Through the Streamlit dashboard, the system displayed the progression

of traffic counter values, predicted near-future values, and highlighted anticipated peak intervals.

Users could interactively explore model behavior by choosing between LSTM, GRU, or RNN models,

including combinations, and adjust forecasting parameters such as window size and prediction steps.

Key metrics like Symmetric Mean Absolute Percentage Error (SMAPE) were updated live to reflect

model performance. The Gemini LLM produced explanatory summaries based on predicted peak

patterns. The demo successfully showed that the system could anticipate upcoming load surges and

generate actionable insights, all within a lightweight, edge-deployable environment running on

commodity hardware, with forecast accuracy exceeding 90% on the test set.

Fig. 9.10.2: Baseline and Prediction given by model

- 43 -

FG-AINN-O-014

Fig. 9.10.3: Peak detection results

Fig. 9.10.4: Learning rate curve based on model training

Fig. 9.10.5: Model Forecast result

Fig. 9.10.6: Streamlit-Based GUI for BTS Traffic Forecasting and Control

Fig. 9.10.7: Recommendations given by LLM based on peak prediction

9.10.10. PoC Observation and discussions

This PoC effectively demonstrates AI-native forecasting of BTS traffic but must further align with

standardized datasets, such as those from ITU, to validate broader applicability and identify coverage

gaps. The current approach should be complemented by a recorded video demo to support the real-

time interface demonstration. The system processes dynamic inputs like time, packet counters, and

contextual events (e.g., festivals), but future iterations must handle diverse NF data types and formats

seamlessly. Additionally, adaptive model selection based on data characteristics—such as sequence

length, variability, and burstiness—should be incorporated into a recommendation engine. This

would enhance the PoC’s intelligence in choosing between LSTM, GRU, or RNN under changing

network scenarios, especially across air interface conditions.

9.10.11. Conclusion

- 44 -

FG-AINN-O-014

The PoC demonstrates that AI-native time-series forecasting can replace static threshold-based

approaches for BTS traffic prediction. By leveraging deep learning models and integrating contextual

knowledge directly into the pipeline, the system offers highly accurate and timely insights. These

predictions empower operators to act preemptively—optimizing network resources before congestion

occurs—thus improving end-user experience and operational efficiency. Moreover, the use of Gemini

for auto-reporting enhances interpretability and actionability, enabling seamless integration into NOC

workflows.

9.10.12. Future Work

To enhance the current system, future efforts will focus on integrating additional contextual features

such as weather conditions, major public events, and regional mobility patterns to further improve

prediction accuracy. The pipeline will be extended to support real-time inference directly within

telecom edge nodes, enabling network-aware adaptation through AI-driven RIC (RAN Intelligent

Controller) xApps. We also plan to implement federated learning for distributed training across BTS

sites while preserving data privacy. Moreover, expanding the model to multi-cell coordination

scenarios will support intelligent load redistribution and handover optimization. Lastly, the use of

semantic communication techniques for traffic classification and summarization will be explored to

enable more intelligent, content-aware traffic control.

- 45 -

FG-AINN-O-014

9.11.1. PoC-011 [b-FG-AINN-I-155] Explainable AI-Native Intent-Based Self-Healing

Network Orchestrator for Rural and Edge Telecom Infrastructure

9.11.2. Delimiting characteristic

AI Agents, Intent-Based Self-Healing, Resilience-Focused Inference Systems, Distributed Multi-

Agent Fault Management

9.11.3. Description

Architecture approaches for deep integration of AI because the PoC is centered on a scalable, multi-

agent architecture where AI components (anomaly detection, explainability, RAG-based healing) are

deeply integrated into the system fabric through agent coordination and knowledge-base coupling,

emphasizing architectural design over single-function AI use.

9.11.4 Gaps Addressed

The PoC aligns fully with WG1 definitions of AI-native systems involving distributed decision-

making, self-optimization, and resilience-centric inference. Our modular agents map to the WG1

definition of AI Agents, functioning independently to observe, decide, and act without human

oversight. This PoC shows how decentralized inference can be operationalized using layered agents

that collaborate asynchronously to detect faults, explain them, and heal them via intent-based

workflows. The design eliminates reliance on static rule-based systems and enables dynamic

adaptation to evolving network conditions, especially critical in resource-constrained rural

deployments. By mapping definitions directly from WG1, this PoC clarifies how AI-native systems

can be practically implemented for scalable and autonomous fault management.

9.11.5. POCs Test Setup

In this proposal, we use an emulated 50-node network and synthetic datasets derived from realistic

rural telecom traffic and outage patterns. Model training is done using Python (Scikit-learn/Keras) on

local computer subject to system compatibility and computational requirements. The agent

architecture uses a lightweight rule-based coordination protocol, simulating MCP (Model Context

Protocol) -style message exchanges. Explainability is demonstrated using SHAP. The system is

orchestrated via simulated flows in NS-3 and Python FSM (Finite State Machine) -based agents.

Knowledge used for inference and fallback is embedded via a local RAG-style query framework. The

test setup for our implementation is customised to simulate a rural telecom infrastructure scenario.

The setup includes the following components:

• Code generation model from manually constructed agent scripts (C++ & Python-based), with

inference pipelines generated from LSTM + SHAP for anomaly detection and explainability.

• Service orchestrator from xOpera and Open6GCore, integrated with lightweight execution

support for simulated TOSCA templates; orchestration flow is managed via an internal controller

with optional hook to xOpera runtime for validation of remediation plans.

• Agent framework from custom multi-agent setup built in Python using ZeroMQ-based

asynchronous communication between Monitor Agent, Calculation Agent, MCP Agent, and Healing

Agent.

• Simulator from internal metric generator using time-series pattern replicators and noise

injection scripts for rural network features (optionally extendable with NS-3).

• Datasets from synthetic datasets derived from rural network profiles with 18 input metrics

per node, reflecting real-time behaviour (e.g., latency, packet loss, CPU, weather). These datasets

replicate environmental, network, and hardware conditions common to edge deployments.

The setup enables isolated testing of fault scenarios (Fiber cut, power fluctuation), real-time metric

streaming, model-based anomaly detection, explainability visualisation, and automated healing plan

generation.

The Fig. 9.11.1 shows the pipeline of control in the test setup.

- 46 -

FG-AINN-O-014

Fig.

9.11.1: The pipeline of control in the test setup.

 9.11.6. Code and Data Sets

Synthetic time-series datasets from NS-3. Metrics include throughput, latency, link status, voltage.

Annotated fault events: fiber cuts, power fluctuations. Labelled normal vs degraded sequences for

LSTM training. Code and datasets can be found here:

https://github.com/Rishi8520/rural_ai_selfhealing_net.

9.11.7. Simulated Use cases

Use Case 1 (TST-01): Fiber Cut — Gradual degradation leads to full disconnection. The NS-3

simulation injects progressive fault patterns on a fiber link, allowing the Calculation Agent to detect

anomalies in advance using LSTM predictions. SHAP then explains the severity and likely root

causes. This prompts the Healing Agent to initiate rerouting via a TOSCA-based self-healing

workflow.

Use Case 2 (TST-02): Power Fluctuation — Voltage instability at a network node is simulated.

Without the Knowledge Base (KB), the system is slow to react and lacks contextual healing guidance.

With KB and RAG integration, the Healing Agent retrieves domain-specific tactics and executes

stabilization actions. This comparison benchmarks how intelligence improves reaction speed and

effectiveness.

Gaps Addressed:

• Static thresholding cannot anticipate gradual degradation or capture intermediate fault stages.

• Lack of real-time explainability slows decision-making and increases downtime.

• Without LLM-based reasoning, healing actions are rigid and unsuitable for edge-case

anomalies.

• Current fault-handling mechanisms lack integration with operator intent or semantic

remediation policies.

Necessity:

This approach enables proactive maintenance, real-time awareness, and autonomous coordination

across agents, aligned with WG2's goals. It shows that AI-native systems can dynamically reason

about complex fault states, adapt to contextual signals, and initiate healing without human

intervention. Traditional rule-based systems are inadequate for evolving rural edge environments

where fault patterns are unpredictable and policy response needs to be context-aware. Our system

https://github.com/Rishi8520/rural_ai_selfhealing_net

- 47 -

FG-AINN-O-014

improves fault isolation and ensures minimal false positives through layered agent collaboration and

interpretable AI.

9.11.8. Architectural concepts

Key Enablers:

• Multi-agent architecture with isolated responsibilities (monitor, detect, heal)

• LSTM + SHAP-based inference loop

• ZeroMQ-based modular inter-agent protocol

• RAG-powered knowledge delivery for healing agents

• Orchestration via TOSCA/xOpera for intent translation

Modularity: Each agent can be improved independently, provided shared formats for anomaly alerts,

healing actions, and orchestration templates are maintained. This enables harmonization across

implementations and allows hybrid deployments.

Performance Improvements:

• Socket-based asynchronous execution improves concurrency.

• RAG/LLM reduces recovery latency by providing context-aware plans.

SHAP supports root-cause verification.

9.11.9. Demo and Evaluation

1. TST-01 – Fiber Cut: Detects via LSTM + SHAP. Self-healing workflow executed

successfully.

2. TST-02 – Power Fluctuation: Benchmarked with vs. without KB. Measured improvements in

detection latency and healing success.

Evaluation includes logs, timing benchmarks, and anomaly confidence scores.

9.11.10. PoC Observation and discussions

• The importance of context-driven healing (vs. static rules) was validated, especially through

comparative tests with and without the Knowledge Base.

• Layer-wise logs improved explainability by tracing data flow through Monitor, Calculation,

and Healing Agents, helping correlate symptoms to actions.

• Fault isolation steps were visualized with before-after comparison using structured outputs

from SHAP explanations and ZeroMQ logs.

• Agents operated asynchronously but harmoniously via defined message schemas, validating

the modular design.

• Comments from previous FG-AINN mentoring sessions influenced improvements in fault

isolation layering, step-wise detection logic, and symptom tracing. We added internal before/after

state snapshots at each layer (metric → anomaly → cause → remedy).

• Lessons learnt include the importance of defining shared input/output schemas early, allowing

agents to evolve independently without losing interoperability.

• We also observed that without RAG + Gemini, agents struggle to resolve ambiguous faults,

reinforcing the need for semantic context in healing.

• Discussions during development highlighted the value of performance benchmarking across

modes (with/without KB) to validate the efficiency of AI-native healing.

• Finally, we iteratively improved the modularity by decoupling orchestration logic from

decision-making, aiding maintainability and extensibility.

9.11.11. Conclusion

This PoC affirms that AI-native systems can transform fault management from reactive ticket-based

processes into proactive, autonomous workflows. With minimal configuration, the system adapts to

diverse rural scenarios.

9.11.12. Future Work

- 48 -

FG-AINN-O-014

While our current proof-of-concept demonstrates intent-driven anomaly detection and autonomous

self-healing through explainable AI and lightweight agents, several open challenges remain for

further research and deployment at scale:

1. Scalability of Agents in Heterogeneous Networks: Our current rule-based multi-agent system

is effective in small to mid-sized topologies. Future work must explore how coordination and

communication between agents scale in large, diverse rural deployments involving different vendor

equipment and protocols.

2. Real-Time Constraints and Low-Latency Learning: Incorporating more complex ML models

(e.g., transformer-based intent interpreters or reinforcement learning agents) may improve flexibility

but introduces latency. Research is needed to balance explainability, speed, and predictive

performance in real-time networks.

3. Interfacing with Real Network Controllers ((Software Defined Networking (SDN)/Network

Function Virtualization (NFV)): Our orchestrator currently simulates healing actions. Integration

with real-world network control systems (e.g., OpenDaylight, Open Network Operating System

(ONOS)) will require protocol adaptation, security compliance, and stateful communication models.

4. Edge Model Optimization and Federated Learning: In future iterations, we aim to deploy

distributed learning systems using federated or incremental learning to adapt models across

geographically dispersed nodes while preserving data privacy and connectivity independence.

5. Intent Disambiguation and Natural Language Generalization: Currently, our intent parser is

rule-based. A future goal is to integrate a fine-tuned language model for more flexible and user-

friendly intent interpretation, especially for multilingual operators or ambiguous commands.

6. Resilience to Adversarial Events and False Positives: The system must be stress-tested under

adversarial scenarios (e.g., spoofed telemetry, conflicting intents) to ensure robustness and prevent

cascading failures due to incorrect healing triggers.

These open problems provide an opportunity for iterative enhancement of our framework toward a

production-ready, standard-compliant AI-Native orchestration system suitable for rural and edge

telecom networks.

Along with these, the 3 additional test cases can also be implemented along with a robust frontend.

The following test cases are part of the proposed roadmap and will be demonstrated in future FG-

AINN conferences or industry pilots:

• TST-03: Equipment Degradation

Simulates gradual performance decay (e.g., rising CPU temperature, error counters).

The goal is to detect degradation early and suggest preventive maintenance.

• TST-04: False Positive Suppression

Evaluates system robustness by injecting benign fluctuations (e.g., short latency spikes).

The system should not raise false alarms or trigger healing unless persistent patterns are observed.

• TST-05: Intent-Based Threshold Configuration

Simulates dynamic operator intents (e.g., "maintain uptime > 95%") and measures system-wide

propagation via MCP.

- 49 -

FG-AINN-O-014

9.12.1. PoC-012 [b-FG-AINN-I-156] Build-a-thon 2025: 5G Adaptive Signal Solutions for Rapid

Transit and Aerial Operations

9.12.2. Delimiting Characteristic

AI itself as a core component because the PoC’s novelty lies in an AI-based adaptive beam steering

algorithm that learns motion patterns and adjusts connectivity in real time, making AI the essential

functional element driving performance improvements.

10.12.3. Description

In this PoC, we aim to generate datasets from ray tracing simulators and study the effectiveness of

the proposed adaptive beam steering algorithm in maintaining connectivity for moving devices, such

as UAVs and emergency response vehicles, under various environmental conditions.

Specifically, the PoC will pave the way for generating datasets for beamforming applications, and

our proposed algorithm performance ensures it meets the demands of dynamic environments while

maintaining low computational complexity in real time.

At this stage, we hypothesise that our algorithm can learn various physical motion patterns of the

mobile station and develop a sense of directional movement. Secondly, we hypothesise that in real-

world 5G base station deployments, the worst-case time delay would be approximately 120 ms for

getting CSI information from feedback from UE.

9.12.4 Gaps Addressed

Traditional beam steering methods are either slow to adapt or rely on pre-programmed patterns, which

are insufficient for highly dynamic use cases like fast-moving vehicles or drones. This PoC addresses

the gap by introducing real-time learning-based steering, enabling context-aware, low-latency beam

tracking. It tackles the limitations of static or delayed beamforming and aligns with the needs of AI-

based, mobility-optimized networks

10.12.5. POCs Test Setup

Sionna’s AI-native simulation environment is used as a Ray Tracing simulator for PHY-layer

modelling with integration of Uniform Rectangular Array (URA) antenna with custom beamforming

modules. The scene will be loaded from OpenStreetMap based on the user's input. A config YAML

file will be used by the user to define parameters and choose the settings and scenario. Evolutionary

algorithms will be used to explore diverse beam configurations across varying user positions and

channel conditions, logging beam configuration, Channel State information (RSSI), and spatial

parameters.

Using this dataset, we then pre-train an agent, enabling it to learn an initial beamforming policy.

Finally, the agent is fine-tuned online using real-time feedback, allowing it to adapt dynamically to

user mobility and environment changes with faster convergence and improved beam precision.

9.12.6. Code and Data Sets

A synthetic dataset was generated using the Sionna RAN simulator, capturing beam configurations,

Channel State Information (CSI), Received Signal Strength Indicator (RSSI), and spatial parameters

across varied UE positions and channel conditions. This dataset was used to pre-train the

reinforcement learning agent, enabling it to learn an initial beamforming policy prior to online fine-

tuning. The data generation was driven by evolutionary algorithms exploring the beam search space

under mobility conditions. Code and data sets can be found here: https://github.com/syed-azim-

git/Buildathon2.0-SSNECE.

10.12.7. Simulated Use cases

The simulation models a high-mobility wireless environment, such as urban transit or drone-based

communication, where a base station equipped with a Uniform Rectangular Array (URA) antenna

tracks and serves mobile UEs in motion. The UEs follow configurable trajectories, and their

positions—as well as channel conditions—change over time. The simulator generates real-time CSI

and RSSI measurements based on user movement, which are fed to the AI layer to dynamically adjust

beamforming weights. This setup allows testing the system’s ability to maintain signal quality and

connection continuity under fast-changing spatial and channel conditions.

9.12.8. Architectural concepts

https://github.com/syed-azim-git/Buildathon2.0-SSNECE
https://github.com/syed-azim-git/Buildathon2.0-SSNECE

- 50 -

FG-AINN-O-014

The architecture integrates:

• Motion learning models for trajectory prediction.

• RSSI-CSI feedback loops for real-time environment sensing.

• Dynamic beam alignment logic executed at the antenna array controller or baseband unit.

• An AI-based control layer that adapts beam parameters without centralized intervention.

9.12.9. Demo and Evaluation

To evaluate the performance and robustness of dynamic beam steering algorithms, we utilized Sionna,

a TensorFlow-based open-source simulator developed by NVIDIA. Sionna offers a flexible and

highly accurate framework for simulating the physical layer of wireless communication systems and

digital twin environment scenes.

Fig. 9.12.1: Regional area simulation

A) Regional Area Simulation:

Fig. 9.12.1shows regional area simulation. To make our simulations more realistic and

relevant, we plan to simulate wireless communication scenarios in our local city environment.

While Sionna supports a few predefined urban scenes, we extend this by using real-world

building and street data from OpenStreetMap.

This allows us to create a simulation environment that closely mirrors the actual layout and

structure of our chosen region. As a result, our beamforming algorithms can be tested under

realistic propagation conditions, improving their effectiveness and applicability to real-

world deployments.

B) Genetic Algorithm-Based Beam Optimization

Fig. 9.12.2. shows flow chart of Genetic Algorithm-Based Beam Optimization. At the core, a

modified Genetic Algorithm (GA) that iteratively searches for the optimal beamforming weight

vector to maximize Received Signal Strength Indicator (RSSI). Unlike conventional GA

approaches that operate over a static search space, our implementation features a dynamic search

space that evolves based on feedback from prior iterations. This allows the algorithm to:

- 51 -

FG-AINN-O-014

• Focus its search on promising beam directions

• Adapt to fast-changing channel conditions

Fig. 9.12.2: Flow chart of Genetic Algorithm-Based Beam Optimization

C) Key Features of Our GA Variant

• Feedback-Driven Evolution: Each generation evaluates candidate solutions by applying the

corresponding beam weights and measuring the RSSI at the UE.

• Search Space Adaptation: The GA narrows or shifts the search bounds based on previously

high-performing beam directions, effectively "tracking" the best beam over time.

• Realistic Evaluation Loop: Each candidate beam is evaluated using Sionna’s ray-traced

propagation and MIMO system modelling, providing realistic feedback for selection pressure.

D) AI Native Implementation

Fig.

9.12.3 shows AI native Implementation.

- 52 -

FG-AINN-O-014

E) Dataset Generator

The Dataset Generator simulates the process of beam selection between a base station (BS) and a

moving receiver (MS) by performing a grid-based beam search at multiple receiver locations. It is

designed to create a comprehensive dataset that can be used for analyzing beamforming strategies,

visualizing search spaces, or training machine learning models for beam prediction.

The generator first defines the metadata for the base station. This includes the 3D position of the BS,

its orientation (which direction it is facing), and the dimensions of its antenna array (number of rows

and columns). This metadata is constant for the entire dataset and describes the transmitter’s physical

configuration. It is saved once in the JSON file so that all receiver positions share the same BS context.

Next, the generator sweeps through a series of receiver positions (frames), simulating the movement

of the receiver, such as a vehicle or pedestrian, along a path. For each frame, the receiver’s 3D position

and orientation are recorded. This captures how the user equipment (UE) moves in space relative to

the fixed base station, providing realistic variation across the dataset. At every receiver position, the

generator performs a beam search by trying various possible combinations of elevation (θ) and

azimuth (φ) angles. For each beam direction tested, it records the received signal strength (RSS). The

best beam, which yields the highest RSS, is saved separately for easy reference, along with its

corresponding theta and phi angles. This best-beam data is crucial for evaluating beam selection

algorithms, as it tells us the optimal direction at each receiver location.

In addition to the best beam, the generator also saves the entire search space for each frame. This

includes all the theta and phi angles tried during the search and their associated RSS values. By storing

this complete grid of results, the dataset preserves detailed information about how signal strength

varies across the entire beamforming space. This is essential for reconstructing beamforming

heatmaps, analyzing the performance of the search strategy, or training models that learn from the

full distribution of possible beams. Finally, the generator also saves Channel State Information (CSI)

for each receiver position. CSI contains detailed parameters of the radio channel, such as path delays,

angles of arrival and departure, and complex gains. This rich data enables more advanced channel

modeling and simulation, supporting the development of realistic communication system prototypes.

The resulting JSON file has a clear structure, which includes a single metadata section describing the

base station setup and a frames section that contains an entry for each receiver position. Each frame

entry includes the receiver’s position and orientation, the best beam details, the complete search space

data, and the channel state information. This organized format ensures the dataset is self-contained

and easy to use for various research and development tasks in wireless communications.

9.12.10. PoC Observation and discussions

The PoC highlights a strong integration between AI-driven beamforming and PHY-layer simulation;

however, there is a need to abstract the Sionna-specific components to generalize the approach for

RAN optimization across simulators. Clarifying the timing and placement of the genetic algorithm

(GA) for dataset creation and the online reinforcement learning (RL) agent for real-time adaptation

is important to improve reproducibility and modularity. The RESTful API interfaces between the AI

layer and the RAN simulator should be documented explicitly to ensure interoperability—enabling

replacement of Sionna with other tools while preserving functionality. Future enhancements could

focus on dataset creation workflows, YAML-based simulation configuration, and support for user-

defined BS/UE locations to enable broader experimentation. Drawing from the DeepSense 6G

Challenge, the team may extend the framework to other radio-layer learning problems. Finally,

formalizing the simulator’s configurable parameters and their representation in YAML would help

standardize testing across use cases and environments.

9.12.11. Conclusion

The PoC demonstrates how AI-based beam steering can improve 5G performance in highly mobile

scenarios by minimizing signal degradation and handover interruptions. By using real-time signal

metrics and learning models, it offers a responsive and context-aware solution that enhances

throughput, reliability, and service continuity in dynamic environments laying the groundwork for

resilient, intelligent transportation and emergency communication systems.

- 53 -

FG-AINN-O-014

9.12.12. Future Work

• An algorithm to understand the pattern of motion of UE to better predict the beam parameters

• Energy Aware Decision making for Beam Steering

- 54 -

FG-AINN-O-014

9.13.1. PoC-013 [b-FG-AINN-I-157] Bridging the Standardization Gap in Next-Generation

Telecommunications

9.13.2. Delimiting Characteristic

Architecture approaches for deep integration of AI because the PoC emphasizes an agentic knowledge

base and coordinated multi-agent pipeline (gap detection, analysis, recommendation, compliance),

showing how AI is deeply integrated into the system architecture to lower the standards participation

barrier.

9.13.3. Description

 In this Build-a-thon 2.0, our objective is to build and demonstrate a functional AI-native solution

with the goal of significantly reducing the 6G standards barrier for contributors.

Specifically, we will:

1. Design and demonstrate a functional AI-native system centred on an agentic knowledge base,

composed of autonomous agents tasked with identifying and addressing deficiencies within ITU-T

6G standards relevant to developing regions.

2. Deploy the Gap Detection Agent to autonomously scan curated ITU documentation and

highlight issues such as network instability and energy inefficiency; subsequently, the Gap Analysis

Agent will evaluate the technical and regional significance of these findings.

3. Employ the Recommendation Agent to generate technically sound, standards-aligned

proposals addressing the identified gaps, followed by the Compliance Agent, which ensures that all

outputs conform to ITU-T requirements and maintain consistency with established norms.

4. Showcase the complete pipeline from autonomous gap detection to the generation of validated

contributions—thereby reducing the technical entry barrier and empowering broader African

participation in the evolution of 6G standards.

At this point, we hypothesise that with the solution of integrating an autonomously identifying AI

agent on our designed knowledge base, we can generate highly relevant and accurate technical

contributions, thereby substantially lowering the entry barrier for African contributors to participate

in 6G standards development.

9.13.4 Gaps Addressed

This PoC addresses key gaps in automating standards intelligence through embedded, modular AI. It

introduces application-aware processing of large standards corpora, autonomous agent lifecycle

management, and low-latency inference with broad generalization. By operating on a semantically

indexed dataset, it enables scalable, context-driven gap analysis. This architecture enhances inclusion

and agility in the 6G standards ecosystem, especially for underrepresented regions

9.13.5. POCs Test Setup

The test setup consists of a modular, AI-native system built around a multi-agent architecture,

designed to autonomously analyse 6G standards, generate compliant contributions, and produce

executable code samples. The system components are as follows:

● Multi-Agent Mechanism: A team of autonomous agents, built using the Langchain framework,

collaborates to perform key tasks across the standardisation pipeline. This workflow is designed to

be methodical, moving from a broad overview to specific, verifiable gaps. It leverages a multi-agent

approach, where each agent has a specialized function. These agents include:

○ Agent 1: The Cartographer

 Maps the thematic landscape of ITU documents by performing topic modelling and summarisation

to provide a high-level overview, guided by user input.

○ Agent 2: The Analyst

 Conducts a detailed comparative analysis of selected topics to uncover inconsistencies, outdated

standards, or underexplored areas.

○ Agent 3: The Hypothesiser

 Transforms analytical findings into clear, testable hypotheses by generating probing questions about

potential gaps.

○ Agent 4: The Verifier

- 55 -

FG-AINN-O-014

 Tests each hypothesis through targeted semantic search and evidence gathering to either confirm or

refute the proposed gaps.

○ Agent 5: The Synthesiser

 Compiles the findings into a structured, prioritised report detailing the gaps, their supporting

evidence, and potential implications.

○ Agent 6:Training Agent: Generates simplified explainers and educational content to support

new African contributors in understanding and using the system.

9.13.6. Code and Datasets

A curated and semantically indexed corpus of ITU-T standards and related 6G technical documents.

Code and data set available at https://github.com/AgabaEmbedded/Bridging-Standards-Gap.

9.13.7. Simulated Use cases

The system supports autonomous AI agents to analyze ITU-T 6G standards and identify specification

gaps, particularly for developing regions. It semantically links abstract technical terms to local

deployment challenges like power scarcity or rural infrastructure. Agents generate compliant proposal

drafts and sample code aligned with standards evolution. This enables inclusive, AI-assisted

contributions to global standardization efforts.

9.13.8. Architectural concepts

This PoC introduces a multi-agent AI architecture, where each autonomous agent performs a distinct

function in the standards engagement lifecycle: gap detection, contextual analysis, recommendation,

and compliance evaluation. The architecture is supported by a domain-specific LLM and a

semantically indexed standards corpus, creating an end-to-end pipeline for AI-assisted, standards-

aware collaboration.

Functional requirements are as below:

REQ1: It is critical that the system perform NLP parsing, preprocessing across modalities, and

semantic embedding on ITU 6G standard documents to create a structured and searchable knowledge

base.

REQ2: It is critical that the knowledge base is well-structured to optimize search and accessibility.

REQ3: It is critical that an autonomous gap detection AI agent analyse the semantically indexed ITU

knowledge base to identify underspecified, missing, or insufficiently detailed gaps relevant to 6G

standards.

REQ4: It is expected that a gap analysis agent shall contextualize and evaluate identified gaps based

on their technical importance and regional relevance, especially focusing on issues pertinent to

African and developing regions.

REQ5: It is expected that the standards recommendation agent shall generate preliminary proposals

and enhancements addressing the identified gaps within the 6G standard specifications.

REQ6: The system shall provide the potential standard contributor with clear, AI-generated insights

and knowledge to assist in formulating innovative and standards-compliant contributions for 6G

standardization.

Requirements for this type of application:

- Source of data: ITU standard material

- Models: Generative AI, Llama 3.23B, Mistral 7B, Imagebind, Jina embedding-V4

- Vector Database: Pinecone Vector Database

- Policies: Text generation based on prompt

9.13.9. Demo and Evaluation

TEST-1: Knowledge Base Loading and Parsing

Objective:

 Validate that the AI agent can successfully load, parse, and semantically embed ITU-T 6G standard

documents from the curated knowledge base.

Process:

● The agent accesses the knowledge base.

● Confirms the completeness and correctness of the loaded data structure for downstream

processing.

https://github.com/AgabaEmbedded/Bridging-Standards-Gap

- 56 -

FG-AINN-O-014

Success Criteria:

● All relevant ITU-T documents are loaded without error.

● Semantic embeddings reflect accurate document content and structure.

● Metadata such as section titles, interface definitions, and regional tags are correctly extracted.

TEST-2: Gap Detection via Agentic Analysis

Objective:

 Evaluate the AI agent’s ability to detect gaps in the 6G standards by identifying incomplete sections,

underspecified interfaces, and region-specific challenges.

Process:

● The agent scans the embedded knowledge base using keyword extraction, summarization, and

embedding similarity.

It flags:

○ Incomplete or missing sections of the standard.

○ Underspecified or ambiguous interface definitions.

○ Technical issues linked to African network scenarios (e.g., rural base stations).

Success Criteria:

● The agent outputs a list of candidate gaps with relevant excerpts and metadata.

● Detected gaps align with known problem areas from domain experts.

9.13.10. PoC Observation and discussions

The PoC demonstrated that the multi-agent AI system could effectively load, parse, and semantically

embed standard documents into a structured and searchable knowledge base. Metadata such as section

titles and interface definitions were accurately extracted, and the system operated efficiently across

all test inputs. Gap detection agents successfully identified missing or underspecified sections,

including region-specific challenges relevant to Africa and developing areas. The system provided

clear, traceable outputs with relevant excerpts, enabling explainable insights. While text processing

was robust, multimodal content like diagrams needs further refinement. Overall, the PoC validated

the system’s ability to support standards development through AI-driven analysis, contextualization,

and recommendations.

9.13.11. Conclusion

This PoC demonstrates multi-AI agent based AI-native approach to democratizing 6G standards

development through an agent-driven system powered by a semantically indexed ITU dataset. By

automating gap detection, analysis, and compliance evaluation, it lowers the entry barrier for

underrepresented regions, particularly in Africa. The modular design enables scalable, context-aware

processing and sets the groundwork for broader integration of AI in standards workflows. This PoC

marks a significant step toward inclusive, intelligent, and responsive 6G standardisation processes

9.13.12. Future Work

Scalability to Diverse Developing Regions: Future studies must prioritize the scalability and

adaptability of 6G solutions to the highly diverse contexts within developing regions. Challenges

include varied infrastructure maturity, significant language diversity, and fluctuating levels of

technical capacity.

AI Ethics: Critical attention is required for the ethical implications of deploying AI-driven 6G

technologies. Future studies should address concerns related to data privacy, algorithmic bias,

transparency, and accountability, particularly when AI models interact with sensitive user data and

make decisions impacting connectivity and services.

- 57 -

FG-AINN-O-014

9.14.1. PoC-011 [b-FG-AINN-I-158] AIONET- AI-native Intent-Oriented Network Edge Tuner

9.14.2. Delimiting Characteristic

AI itself as a core component because the PoC makes AI the core decision-making engine for real-

time traffic classification, priority inference, and shaping at the UE, with AI logic (rule-based

inference) directly driving system autonomy and user-centric control.

9.14.3. Description

The proposed Proof of Concept (PoC), AIONET, implements an AI-native, rule-based edge traffic

controller that performs real-time traffic classification, priority inference, and bandwidth shaping

directly at the user equipment (UE). Operating as a lightweight agent, AIONET uses application-level

metrics—such as CPU usage, flow statistics, and encrypted traffic detection—to infer per-application

priorities dynamically. It supports programmable policy injection through user override mechanisms

and provides feedback-based shaping without dependency on centralized infrastructure.

Key Components:

• Traffic Classification & Monitoring: Using Scapy and psutil, the system identifies active

flows, maps ports to running processes, and calculates traffic statistics per flow.

• Priority Computation Engine: Based on flow bandwidth, packet counts, CPU usage, and

encrypted flow flags, the system computes a composite score used to assign priorities

(high/medium/low).

• Dynamic Bandwidth Shaping: Leveraging the pyroute2 library for kernel-based HTB shaping

or pytun for user-space TUN shaping fallback, bandwidth limits are enforced per flow using adaptive

logic.

• Policy Injection Interface: A Flask-based UI/dashboard allows users to manually override

computed priorities. These inputs are recorded and reflected dynamically in shaping behavior without

restarting the service.

• Unknown Traffic Handling: Flows not associated with known applications are tagged as

"unknown" and shaped based on packet timing behavior. Their signatures are logged into a local

database for inspection or future policy updates.

• Data Persistence: SQLite is used to log metrics, feedback, and unknown flows, enabling

auditability and offline analysis.

Evaluation:

The system is tested in a live Linux environment, where shaping behavior is validated using tools like

iftop, custom packet injections, and interactive bandwidth stress tests. The responsiveness to user-

injected policies and unknown traffic detection is demonstrated through the dashboard interface.

Scope & Relevance:

The PoC directly addresses objectives outlined in the Terms of Reference for AI-native networking

by providing:

• A programmable, autonomous, and user-centric shaping engine

• Functional operation in the non-radio domain

• Alignment with digital equity goals through fair bandwidth distribution

This approach exemplifies distributed intelligence, intent-based policy enforcement, and AI-native

edge control without requiring ML model inference or central orchestration.

9.14.4 Gaps Addressed

Gaps Addressed:

1. Lack of Real-Time, Application-Aware Traffic Control at the UE:

o Gap: Traditional AI-native concepts have focused on network core or centralized

orchestration, leaving user equipment (UE) with limited intelligent control.

o Addressed by AIONET: Implements fine-grained traffic monitoring and shaping on the UE

using process-level statistics and flow dynamics, demonstrating the feasibility and value of

decentralized, device-side intelligence.

2. Insufficient Support for Programmable Policy Injection:

o Gap: Current network policies are static or require backend orchestration.

- 58 -

FG-AINN-O-014

o Addressed by AIONET: Enables dynamic, user-driven policy injection via feedback through

a Flask dashboard, allowing priority override and real-time impact on traffic shaping logic.

3. No Handling Strategy for Unknown or Emerging Applications:

o Gap: Networks struggle to handle unclassified or new traffic formats effectively.

o Addressed by AIONET: Logs unknown flow signatures, assigns tentative priorities using flow

interval heuristics, and provides a user feedback loop to later reclassify them—paving the way for

semi-autonomous policy learning.

4. Missing Lightweight Implementations Suitable for Digital Inclusion Scenarios:

o Gap: AI-native solutions often assume high compute availability and overlook edge-

constrained environments.

o Addressed by AIONET: Designed as a lightweight, rule-based daemon using Scapy, SQLite,

and optional kernel hooks, making it deployable on low-end user devices without central coordination.

5. Underdeveloped User-Feedback Integration in Edge Intelligence:

o Gap: User-centric decision feedback is rarely integrated at the UE.

o Addressed by AIONET: The feedback loop affects real-time prioritization and persists across

sessions, demonstrating adaptive intelligence rooted in user intent and contextual awareness.

9.14.5. POCs Test Setup

This PoC is deployed as a standalone Python-based agent (AIONET) on a Linux-based user

equipment (UE), simulating an edge device in a real-world mobile network. The test environment is

designed to evaluate real-time traffic classification, dynamic bandwidth shaping, and policy injection

using the following components:

1. Hardware & OS

• Device: x86 Linux laptop

• OS: Ubuntu 20.04 LTS (system with tc, pyroute2, and TUN support)

• Kernel: Linux kernel ≥ 5.x (for HTB queuing)

2.Software Stack

Layer Components Used

Traffic Sniffing Scapy's sniff() in passive mode

Flow Analysis Custom FlowAnalyzer using deque & interval metrics

Process Mapping: psutil → app name ↔ port ↔ CPU usage

Shaping Control: pyroute2 for kernel-based HTB OR pytun for fallback

Policy DB

SQLite (aionet1.db) with app_priorities, unknown_apps, feedback, app_metrics

Web UI Flask with /metrics dashboard, override form, and custom packet sender

Threads Background threads for CPU monitoring, port mapping, and packet sniffing

3. Traffic Generation

• Real Traffic: Zoom, YouTube, Chrome, file downloads, etc., run in parallel

• Synthetic Packets: Sent via /send_custom_packet Flask endpoint (custom UDP-based packet

class MyPacket)

• Unknown Apps: Any traffic not mapped via psutil is logged in unknown_apps

4. Bandwidth Shaping Setup

• HTB Classes are created per-app using pyroute2 on interface ifb0

• Rate limits are based on dynamic priority score computed from:

• Application CPU %

• Flow bandwidth (kbps)

• Packet count

• Encryption flags

• User-defined bonuses

• UN fallback is used if pyroute2 or tc kernel interface fails

• Shaping updates are immediately visible in iftop or tc -s qdisc

- 59 -

FG-AINN-O-014

Evaluation Metrics

• Accuracy of flow classification (known vs. unknown)

• Response to user override via web dashboard

• Effectiveness of shaping (cap observed via iftop / tc)

• Overhead on CPU usage by AIONET process

• Persistence & learning (e.g., unknown apps accumulate over time, user overrides persist in

DB).

 9.14.6. Code and Data Sets

Code and data set available at https://github.com/Varsh-gr8/AIONET_ITU_build-a-thon2.0.git.

These datasets are primarily generated at runtime and stored in SQLite (aionet1.db) or loaded from

JSON configuration. They support traffic classification, policy injection, flow monitoring, and

shaping decisions.

1. app_priorities(app_name TEXT PRIMARY KEY, base_priority TEXT, user_override TEXT,

last_updated TEXT)

2.feedback(id INTEGER PRIMARY KEY, app_name TEXT, current_priority TEXT,

override_priority TEXT, timestamp TEXT)

3.unknown_apps(id INTEGER PRIMARY KEY, app_signature TEXT UNIQUE, first_seen

TEXT, last_seen TEXT, assigned_priority TEXT)

4.app_metrics(id INTEGER PRIMARY KEY, app_name TEXT,

 cpu_percent REAL, bandwidth REAL, priority TEXT, timestamp TEXT)

aionet_priorities.json (Contains static bonus weights for scoring and fixed port-based shaping rules)

9.14.7. Simulated Use cases

1. Dynamic Bandwidth Shaping for Real-time Conferencing (Zoom, Teams)

Scenario: A user is in a Zoom call while background apps like Chrome and YouTube are active.

Simulation:

• AIONET detects Zoom traffic by port and process mapping.

• FlowAnalyzer tracks packet intervals and bandwidth.

• High CPU and frequent packets raise Zoom’s computed score.

• apply_bw_shaping() boosts bandwidth dynamically for Zoom (HTB or TUN).

• User feedback confirms priority as correct (or manually overrides via /override).

Outcome: Zoom receives consistently prioritized bandwidth without manual config.

2. Unknown Application Detection and Logging

Scenario: A new or unsupported application begins transmitting packets.

Simulation:

• Packets are identified by Scapy but not mapped in port_to_app.

• AIONET logs signature in the unknown_apps table.

• A default shaping strategy is applied (high if fast interval, else medium).

Outcome: Unknown flows are not ignored and can be reviewed via dashboard for user override

purposes.

3. User Policy Injection via Feedback

Scenario: A user notices YouTube is buffering and wants it prioritized.

Simulation:

• User override with app=YouTube, priority =high.

• AIONET updates user_override in app_priorities.

• All future shaping checks respect this override.

Outcome: Priority changes take effect immediately without restarting the system.

5. Custom Packet Format Injection for Resilience Test

Scenario: Admin wants to test system behavior using non-standard packets.

Simulation:

• User sends packets using /send_custom_packet Flask route.

• Custom packet format MyPacket is injected into the system using Scapy.

https://github.com/Varsh-gr8/AIONET_ITU_build-a-thon2.0.git

- 60 -

FG-AINN-O-014

• AIONET handles it like any unknown flow and applies default shaping.

Outcome: System can tolerate non-standard/experimental traffic without failure.

6. Monitoring Flow Behavior & Bandwidth Score Adaptation

Scenario: A user starts multiple downloads in Chrome.

Simulation:

• FlowAnalyzer records high throughput and frequent packets.

• Chrome gets boosted bandwidth based on CPU usage and traffic stats.

• Metrics logged into app_metrics and served via /metrics.

Outcome: The system adapts passively to load, optimizing without needing user intervention.

7. Fallback to User-space Shaping (TUN-based)

Scenario: The device lacks kernel support for tc / ifb0.

Simulation:

• IPRoute is not available or fails; AIONET uses _ensure_tun_shaper() instead.

• TunTapDevice (aionet0) simulates traffic queuing in user-space.

Outcome: Bandwidth control still functions without requiring privileged kernel support.

9.14.8. Architectural concepts

Fig. 9.14.1 shows Code flow and Fig. 9.14.2 shows Basic Flow.

Fig. 9.14.1: Code flow

- 61 -

FG-AINN-O-014

Fig. 9.14.2: Basic flow

 9.14.9. Demo and Evaluation

Demo 1: PCAP Playback/Real-time running applications for Known and Unknown Packet Formats

• Setup: Use Real-time running applications/ Scapy or tcpreplay to inject .pcap files with both

known application traffic (e.g., Zoom, Chrome) and unknown/custom packet formats (using the

MyPacket class).

• Objective: Show that known traffic is prioritized based on real-time CPU, bandwidth,

encryption, and past behavior. Unknown traffic is logged with auto-assigned default shaping rules

(e.g., based on flow interval).

• Evidence:

o Real-time classification via /metrics endpoint.

o SQLite logging in unknown_apps table.

o Visual shaping effect seen in logs/verified using iptables/tc

Demo 2: Policy Recommendation for Unknown Applications

• Setup: Introduce unknown traffic (e.g., via send_custom_packet() endpoint).

• Objective: Demonstrate how the system:

o Detects unclassified flows.

o Assigns shaping behavior (medium/high) based on interval and frequency.

o Exposes visibility on dashboard for admin/operator to review and change the shaping by

overriding the priority of the application. (from which model learns)

• User Feedback Loop:

o Admin manually sets new priority via /override.

o Reflects instantly in shaping behaviour.

• Evaluation Metric:

o Time taken to log → identify → override.

o Change in shaping confirmed using tc -s qdisc or API.

Demo 3: Standard Policy Injection and Enforcement

• Setup: Simulate a JSON-based update in aionet_priorities.json (e.g., bumping YouTube bonus

to 0.8).

• Objective:

o Demonstrate programmable policy injection.

o Use a file watcher (optional thread) to reload bonuses without restarting the system.

• Outcome:

o Bonus affects score → triggers change in computed priority.

o Triggers HTB class update (visible in logs and system interface).

System Evaluation Criteria:

Aspect Method

Traffic Classification Evaluate packet parsing, protocol tagging, flow construction

accuracy

- 62 -

FG-AINN-O-014

Priority Scoring Accuracy Correlate app usage, CPU stats, and shaping behavior

Bandwidth Shaping

Efficacy

Use iftop and tc to verify traffic capping

Unknown Packet Handling Monitor entries in unknown_apps, shaping defaults

Policy Adaptability Change bonus/user override and observe system response

Resilience Fallback to pytun if kernel shaper is unavailable

User Visibility Dashboard /metrics response fidelity and UI responsiveness

9.14.10. PoC Observation and discussions

Motivation and Focus:

The PoC aimed to create an AI-native, lightweight, and autonomous traffic controller that operates at

the User Equipment (UE) level without relying on a central backend.

Unknown Packet Handling:

To address feedback regarding handling previously unseen traffic, the system detects and logs

unknown flows, using flow characteristics like packet interval and volume to assign a default priority

(e.g., “high” if interval is low).

Dual-mode Bandwidth Shaping:

o Implemented both kernel-level shaping using pyroute2 (HTB via tc on ifb0) and

o A user-space fallback using pytun with a token bucket rate-limiter.

This ensured functionality even when ifb0 was unavailable.

AI-driven Priority Scoring:

• Developed a scoring model based on:

• CPU usage of the application (via top)

• Packet count and bandwidth of the flow

• Encryption flag (TLS detection on ports 443, 8443)

• Application-specific bonus weights

• This scoring is used to compute dynamic traffic priority.

User Feedback & Policy Injection:

o Users can override computed priorities through a Flask-based dashboard (/override endpoint).

o Overrides are persisted in SQLite and immediately affect shaping.

o This mechanism acts as a programmable, intent-based policy injection point—addressing one

of the main comments.

Policy Configuration Reloads:

o While the system uses aionet_priorities.json to configure bonuses and port rules,

o I learned from feedback that adding a watcher thread to dynamically reload this file could

improve policy responsiveness (though runtime override already exists).

Separation of Policy Decision & Enforcement:

• The system clearly separates:

• Decision logic (priority computation and user overrides)

• Enforcement (actual bandwidth capping via HTB or TUN)

• This aligns with FG-AINN architectural expectations.

Security Considerations:

o Current implementation flags encrypted flows but lacks deep packet inspection or robust

anomaly detection.

o These were acknowledged as future areas of improvement.

Learning & Takeaways:

• Gained experience in implementing AI-native principles like:

• Autonomous, local inference

• Decentralized policy control

• Dynamic adaptation based on system and traffic context

- 63 -

FG-AINN-O-014

• Understood how to balance simplicity with functionality, especially in resource-constrained

edge environments.

9.14.11. Conclusion

This PoC successfully demonstrates an AI-native, lightweight, and autonomous traffic control system

operating entirely at the user equipment (UE) level. By integrating real-time flow analysis, dynamic

scoring based on application context, user-driven policy overrides, and dual-mode bandwidth shaping,

it delivers decentralized, programmable network management without backend dependency. The

architecture aligns with the objectives of FG-AINN by showcasing non-radio domain intelligence,

flow-level adaptability, and user-centric control. This work lays the foundation for future

enhancements in security, collaborative inference, and resilience—offering a concrete step toward

AI-native network standardization.

9.14.12. Future Work

• Security and Trust Mechanisms

The current AIONET prototype lacks integrated encryption validation, secure update channels, and

trust verification for user feedback. Future work will explore lightweight cryptographic checks and

attestation mechanisms for policy integrity and safe override operations.

• Collaborative Inference across Devices

AIONET operates in isolation per device. Introducing cooperative, distributed learning among user

equipment (UE) could enhance collective awareness of emerging traffic patterns or malicious activity,

especially in dense edge environments.

• Scalability for Multi-User/Enterprise Scenarios

The solution is currently UE-centric. Scaling the framework for shared networks (e.g., hotspots,

campus, or enterprise LANs) will require new abstractions for multi-user traffic shaping, role-based

policy hierarchies, and per-user flow visibility.

• Fine-Grained Application Identification

The reliance on port-to-process mapping is coarse and can miss traffic from multiplexed or

containerized applications. Integration of DPI-lite (Deep Packet Inspection) or machine learning-

based traffic fingerprinting is a potential enhancement.

• Context-Aware Shaping Beyond CPU and Bandwidth

AIONET uses CPU usage, packet rate, and encryption flags. Future versions could integrate

additional context like screen activity, user foreground focus, battery status, or even predicted intent

to refine shaping decisions.

• Formal Policy Language Support

While current overrides are JSON-based and ad hoc, the introduction of a lightweight, declarative

intent language for policies (similar to P4 or OpenIntent) would make the system more expressive

and user-friendly.

• Long-Term Traffic Learning and Auto-Tuning

Adding support for learning from historical flows could allow AIONET to auto-tune scoring weights

and bonuses over time using reinforcement learning or clustering methods.

• Resilience and Fault Tolerance

Currently, if a shaping module crashes or interfaces reset, the logic doesn’t automatically recover.

Adding watchdogs, state persistence, and auto-recovery scripts would enhance robustness.

• Testing on Diverse Network Conditions

Extensive evaluation across varying wireless conditions (e.g., 5G, poor LTE, congested Wi-Fi) and

integration with emulators (like ns-3) will provide deeper insights into system behavior under stress.

• Standardization Alignment

Future iterations should better align with FG-AINN WG1 deliverables, including mappings to AI-

native architectural components and contribution to reusable templates for other implementers.

- 64 -

FG-AINN-O-014

10. Combined Learnings from Build-a-thon 1.0 and Build-a-thon 2.0 Mentoring Sessions

The mentoring sessions across all participating PoCs revealed several critical themes that are essential

for maturing AI-native network solutions and aligning them with real-world deployment constraints

and research expectations.

Below is a summary of technical observations into actionable learnings that cut across AI modeling,

system design, operational integration, and future alignment with standards and scalable architectures.

1) Clarity of Data Structures and Model Inputs

Across PoCs, there was a clear need to explicitly define data schemas—such as packet-level fields

(e.g., timestamp, protocol, source/destination ports, packet length), CLI command parameters, JSON

structures from simulators like NS3, and YAML templates for healing workflows. Projects were

encouraged to demonstrate how their systems handle dynamic or unknown data formats, particularly

when supporting real-time, user-driven scenarios. The inclusion of sample data formats, validation

pipelines, and data parsing techniques is essential to communicate system robustness.

2) AI Model Selection, Integration, and Hosting

PoCs showcased diverse AI techniques (DQN, LSTM, Bi-LSTM, LLM agents), but mentors

emphasized the importance of explaining where and how models are hosted, trained, and invoked.

For example, if an LSTM model is used in Open5GS or if a DQN selects vendors, it must be clear

what inputs it takes, what outputs it produces, and what network state or features are required. Some

teams were advised to explore inference-as-a-service models, semantic reasoning, and hosting in

CDN or MEC layers, depending on the use case (e.g., real-time healthcare, cooperative ISAC, fault

healing).

3) System Interfaces and Layer-wise Architecture

A common gap was insufficient detail on how different components interact—such as how the

application layer sends requirements to the AI model, how the AI layer makes decisions, and how the

network layer enforces them. PoCs were urged to present layer-wise diagrams, interface schemas

(e.g., REST, gRPC, NeIF, Os-Ma-Nfvo), and detailed before/after workflows to clarify orchestration,

healing, or monitoring actions. For example, CLI execution workflows need to specify how changes

are determined, mapped, and validated, what base models are used for intent parsing, and how

domain/network knowledge is structured.

4) Closed-loop Automation and Fault Management

Several PoCs (especially related to slice management and healing agents) were encouraged to

demonstrate closed-loop feedback systems with monitoring, reasoning, and actuation cycles. Projects

like healorch_agent.py and others implementing NS3 simulation with real-time anomaly detection

were advised to show clear workflows: from symptom detection → anomaly alert → healing plan

generation → config action via CLI/YAML. Further, creating fault isolation logic, defining KPI

thresholds, and developing domain-specific knowledge bases (KBs) were considered essential for

making systems operationally meaningful.

5) Security, Credentials, and Execution Environment

For PoCs that execute network configuration (e.g., CLI push to VyOS/Cisco/Juniper), security

considerations like credential management, access control, and trusted execution environments were

largely underdefined. Teams were reminded to specify how login, authentication, and permission

models are managed, especially in remote or multi-tenant environments.

6) Use Case Depth and Deployment Focus

Mentors emphasized the need for realistic scoping—particularly for PoCs targeting specific

deployment contexts like Delhi. Projects were advised to focus on one use case end-to-end (e.g.,

human activity detection, slice resource scaling, ISAC for emergencies) and map the application’s

needs to network slice parameters, AI inference points, and orchestration enhancements. Clear

documentation of what will be implemented, what is out of scope, and what AI technique is

demonstrated helps in evaluation.

- 65 -

FG-AINN-O-014

7) Knowledge Base and ITU Standards Alignment

Knowledge curation and sharing were recognized as a foundation for system scalability and remote

team collaboration. The idea of building a central knowledge base—including CLI templates, known

faults and fixes, model versions, RAG schemas, and standard mappings—was strongly recommended.

Additionally, PoCs were encouraged to conduct gap analyses against ITU standards and public

datasets (e.g., traffic datasets) to align with international frameworks and contribute back insights.

8) Advanced Themes: Semantic Communication, Federated Learning

Emerging techniques like semantic communications, federated learning, and mixture of experts were

proposed as future enhancements. These approaches could support model collaboration across

domains, reduce redundancy, and enable privacy-preserving analytics. For example, Cellucast and

SPV were guided to explore semantic verification, regional inference, and RAN-aware learning,

provided interface and resource requirements from the network are clearly defined.

- 66 -

FG-AINN-O-014

11. Bibliography

[b-Shah] Shah. P et al. “Topics and sample submissions for Build-a-thon 2025”, ITU Focus

Group on AI Native for Telecommunication Networks (FGAINN) https://extranet.itu.int/sites/itu-

t/focusgroups/ainn/input/FG-AINN-I-094-R1.docx.

[b-FG-AINN-O-08] Xiaomi An et al., “Concept building for artificial intelligence native for

telecommunication networks”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/output/FG-AINN-

O-08.zip.

[b-FG-AINN-I-104_R1] Priyadarsini K et al., “AI-Native Proactive Network Slice Marketplace for

Dynamic Service Ecosystems”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-

104-R1.docx.

[b-FG-AINN-I-136] A. Israel et al. “Build-a-thon 2025: Using AI to Reduce the 6G Standards

Barrier for African Contributors”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-

AINN-I-136.docx.

[b-FG-AINN-I-128] C.Varshah and N. Chakraborty “Build-a-thon 2025: AIONETx”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-128.docx.

[b-FG-AINN-I-133] N. P. Mohare et al. “Build-a-thon 2025: NETSPEAK”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-133.docx. truth

[b-FG-AINN-I-135] S. Azim et al. “Build-a-thon 2025: 5G Adaptive Signal Solutions for Rapid

Transit and Aerial Operations”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-

135.docx.

[b-FG-AINN-I-130] A.Nishtala et al. “Build-a-thon 2025: Explainable AI-Native Intent-Based

Self-Healing Network Orchestrator for Rural and Edge Telecom Infrastructure”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-130.docx.

[b-FG-AINN-I-132] K. Singh et al. “Build-a-thon 2025: Invisible Guard – Passive Wi-Fi Sensing

for Smart Border & Building Surveillance”, https://extranet.itu.int/sites/itu-

t/focusgroups/ainn/input/FG-AINN-I-132.docx.

[b-FG-AINN-I-131] S. S. ZABEEN et al. “Build-a-thon 2025: SRM UNIVERSITY-AP”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-131.docx.

[b-FG-AINN-I-134] Bhavana et al. “Build-a-thon 2025: Truth Shield: Real-Time AI-Powered Fake

News Control System”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-

134.docx.

[b-FG-AINN-I-129] Nethravathi K A et al. “Build-a-thon 2025: Intelligent Network Traffic

Capacity Prediction for BTS”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-

129.docx.

[b-FG-AINN-I-155] A. Nishtala et al. “Build-a-thon 2025: Explainable AI-Native Intent-Based

Self-Healing Network Orchestrator for Rural and Edge Telecom Infrastructure”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-155.docx.

[b-FG-AINN-I-156] S. Azim et al. “Build-a-thon 2025: 5G Adaptive Signal Solutions for Rapid

Transit and Aerial Operations” , https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-

I-156.docx.

[b-FG-AINN-I-157] A. Israel et al., “Bridging the Standardization Gap in Next‑Generation

Telecommunications”, https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-

157.docx.

[b-FG-AINN-I-158] C. Varshah et al. “AIONET- AI-native Intent-Oriented Network Edge Tuner”,

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-158.docx.

https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-094-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-094-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/output/FG-AINN-O-08.zip
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/output/FG-AINN-O-08.zip
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-104-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-104-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-136.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-136.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-128.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-133.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-135.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-135.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-130.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-132.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-132.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-131.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-134.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-134.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-129.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-129.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-155.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-156.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-156.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-157.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-157.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ainn/input/FG-AINN-I-158.docx

- 67 -

FG-AINN-O-014

Annex I

A.13 justification for proposed new ITU-T TR.POC-AINN "Technical Report -

Proof-of-Concept activities for AI Native Networks"

Question: Q20/13 Proposed new ITU-T Technical report Tashkent, Oct 28-Nov 6

Reference

and title:

ITU-T TR.POC-AINN "Technical Report - Proof-of-Concept activities for AI Native

Networks"

Base text: - Timing: 2027-03

Editor(s): Preksha Shah, IIT Bombay, email: 30005100@iitb.ac.in

Liya Yuan, ZTE, email: yuan.liya@zte.com.cn

Approval

process:

Agreement

Purpose and scope (Define what this document will address and its intent or objectives in order to

indicate the limits of its applicability):

On the basis of the progress made by ITU-T FG AINN WG4, including PoCs and outcomes from

collaborative activities such as the Build-a-thon, this technical report focuses on the following aspects:

 Considerations on general requirements and expectations from the PoCs, including demonstrating the

delimiting characteristics of AI Native, proving the concept practically with code, test setup and demo

setup, and evaluation on test scenarios;

 PoC studies focusing on demonstrating AI-native capabilities across a diverse range of network

scenarios; PoCs are mapped to (a) gaps, (b) use cases, and (c) architecture concepts.

 Combined learnings from mentoring sessions held for Build-a-thon.

Summary: This Technical Report provides details on the Proof-of-Concept activities under ITU-T FG-

AINN WG4. This report provides the technical summary of the activities done under PoC, and it covers

the following:

- Requirements for the Proof of Concept, including Build-a-thon.

- Description of the Proof of Concept and results.

- Learnings from PoC development mentoring sessions, including Build-a-thon

Relations to ITU-T Recommendations or other documents (approved or under development):

ITU-T Y.3102, ITU-T Y.3172, YSTR.AN-PoC

Liaisons with other study groups or with other standards bodies:

ITU-T SG2, SG11, SG16, IEEE, ETSI ENI, ETSI ZSM, TMF, 3GPP, NGMN

Supporting members that are committing to contributing actively to the work item:

IIT Bombay, ZTE

mailto:30005100@iitb.ac.in
mailto:yuan.liya@zte.com.cn

