FGAI4H-F-013-A01

Zanzibar, 3-5 September 2019

Source:	TG-Outbreaks topic driver TDD update: Outbreaks (AI for Outbreak Detection) Discussion					
Title:						
Purpose:						
Contact:	Martina Fischer Topic driver Robert Koch Institute, Ge	E-mail: <u>fischerma@rki.de</u> ermany				
Abstract:	This PPT summarizes the activities for the TG-Outbreaks, for presentation and discussion during the meeting.					

In collaboration with WHO

Topic Group: Disease Outbreak Detection Data & Benchmarking challenges

Dr. Martina Fischer Robert Koch-Institute, Berlin, Germany

Zanzibar 3rd-5th Sept 2019

Background

- Infectious disease outbreaks pose a major risk to public health
- Early detection of outbreaks can prompt fast interventions
- Case data are collected by diverse surveillance systems
- Al algorithms can be applied to detect aberrant case numbers based on these data collections
- AI algorithms have the potential to increase the timeliness and accuracy of outbreak detection

Objective

Example: German reporting system

German Reporting System

Aim:

Early outbreak detection for fast *intervention*

Surveillance of > 80 pathogens and > 400 counties recording ~ 500.000 cases/year detection ~ 20.000 outbreaks/year

Example: German reporting system

German Reporting System

Example: weekly case data of Salmonella

ROBERT KOCH INSTITUT

Home Krankheiten 🗸

Für Salmonellose (SAL-ST-GrB), KW33-38, Stichtag 23.09.2017: Kein Signal wurde generiert für die 6 Subtypen, die mindestens 1 Fall haben.

CSV Excel Kopieren Drucken

0

Signale-Bericht

1 bis 6 von 6 Einträgen

Culture .	gF ≑	Woche 33				Woche 34				Woche 35				Woche 36				
Subtyp		F 🔶	A \Rightarrow	M	G 🔶	F ≑	A	M - \$	G 🔶	F 🔶	A \Rightarrow	M - \$	G 🍦	F 🔶	A \Rightarrow	м 🔶	G 🍦	F 🔶 A
S.Typhimurium	429	65	6	59	94	79	7	60	<mark>9</mark> 3	75	0	62	95	80	3	60	95	95
Salmonella der Gruppe B	146	26	0	24	40	24	1	25	40	17	1	26	41	29	1	24	39	20
S.Typhimurium, monophasisch	6	1	0	2	8	1	0	3	8	2	0	2	8	2	0	2	8	0
Salmonella der:4,12 H1:- H2:-	2	0	0			1	0			0	0			1	0			0
Salmonella der:4,12 H1:i H2:-	1	0	0			1	0			0	0			0	0			0
Salmonella der0:4,5 H1:- H2:-	1	0	0			0	0			0	0			0	0			0

Fallkarte für SAL-ST-GrB, KW33-38, Stichtag 23.09.2017

Verteilung nach Altersgruppe für SAL-ST-GrB, KW33-38, Stichtag 23.09.2017

Verteilung nach Geschlecht für SAL-ST-GrB, KW33-38, Stichtag 23.09.2017

Data sources for outbreak detection algorithms

Different surveillance systems:

- national/ mandatory reporting systems
- (syndromic) surveillance systems:
 - Near-real-time syndromic surveillance:
 - e.g. routine data from emergency departments and hospitals
 - (e.g. ESEG-project in Germany)
 - Antibiotic Resistance Surveillance (ARS project in Germany)

— ...

potential other data sources:

- publicly available sources (e.g. meterological data,..)
- online data sources (wikipedia, google clicks, HealthTweets, Twitter, etc.)
- near real-time symptom data by self-assessment health apps

Benchmarking challenges: (1) Data

- Definition label ,Outbreak'
 - Exact start/end-time point \rightarrow size of outbreaks often unknown
 - Number of epidemiologically connected cases?
 - Confirmation by simple lab test or molecular analysis
- Label uncertainties
 - How to deal with unlabelled outbreak cases for benchmarking?
 - Minor peaks (with no confirmation): outbreak **or** random variation?
- Data diversity
 - Highly diverse outbreak data patterns of the <u>different pathogens</u>
 - → Detection necessary per pathogen and per feature combinations (regions, risk groups,..)
- Test data
 - Needs to reflect national/international outbreak realities
 - Each country relies on individual national disease surveillance systems.

 \rightarrow How do we optimally define a test set (undisclosed) to serve as a gold standard for benchmarking?

Benchmarking challenges: (2) Metrics

- Definition of epidemiologically relevant <u>metrics</u> for AI-algorithm evaluation:
 - Sensitivity & Specificity
 → How to strike the balance?
 - precise + early detection of outbreaks
 - o minimize number of false alarms
 - o accounting for case numbers: missed large outbreaks penalized more than missed small ones
 - \circ precise outbreak size detection

• Timeliness

- by time (days/weeks) passed
- \circ by number of occurred cases
- before outbreak detection
- Pathogen-specific
 - o specific metrics according to pattern diversity?
- Metrics & test data need to be usable for evaluation comparison of AI and established statistical models for outbreak detection

Current members in topic group:

- Robert-Koch-Institute (National Public Health Institute Germany), involving members from different groups within the institute
 - Dr. Alexander Ullrich, Infection epidemiology, Signale team (RKI, Unit 31)
 - Dr. Stéphane Ghozzi, Infection epidemiology, Signale team (RKI, Unit 31)
 - Dr. Benedikt Zacher, Infection epidemiology, Nosocomial infections (RKI, Unit 37)
 - Dr. Bernhard Renard, Bioinformatics (RKI, Unit MF1)
 - Dr. Martina Fischer, Method development and research infrastructure (RKI, Dep. MF)
 - Dr. Janina Esins, Method development and research infrastructure (RKI, Dep. MF)

Interested in topic group:

Name	Affiliation
Philippe Verstraete,	Co-founders of "Milan and Associates", consultancy in
Dr. Giovanna Gutierrez	epidemic intelligence, outbreak response, and more
Elaine Nsoesie, PhD	Assistant Professor of Global Health; School of Public Health; Boston University
Victor Akelo, MD, MPH	Co-lead for Child health and mortality Prevention Surveillance (CHAMPS) project in Kenya
Claire Jarashow, PhD, MPH	Chief, Epidemiology and Data Unit; Acute Communicable Disease Control; LA County Department of Public Health
Sharon Greene, PhD, MPH	Director, Data Analysis Unit; Bureau of Communicable Disease; NYC Department of Health and Mental Hygiene

Contacted by us for participation in topic group:

Name	Affiliation
Dr. Andre Charlett	Public Health England; National Infection Service;
Alex J Elliot, PhD	* Statistics, Modelling and Economics * Real-time Syndromic Surveillance
Roger Morbey, PhD	Real-time syndromic surveillance

Call for participation

Contributions by:

• Collecting labelled test data

→ data stream directly linked to outbreak labels (expert/lab confirmed) of high value.

- AI models and algorithms for outbreak detection

 → contributing to the development of a viable benchmarking
 framework
- General support on different aspects of this topic (data, methods, benchmarking, etc.)