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Background:

Artificial intelligence (AI) has emerged as a critical technology in oral health imaging, providing significant opportunities to
enhance accuracy, efficiency, and reduce human error. 

AI is the capacity of computer systems to execute tasks that are typically carried out using human intelligence. 

Conventional machine learning and deep learning are both subsets of AI.

Machine learning is limited compared to deep learning, as it necessitates engineering and domain expertise to develop a 
feature extractor.

Deep learning's key characteristic is that the layers of features are not designed by engineers but are instead extracted 
automatically from the input data. In DL, a convolutional neural network (CNN) is a class of artificial neural network most 
applied to analyze visual imagery.



Applications of AI in Oral Radiology: 

• Tooth detection and numbering 

• Bone loss and periodontal disease detection 

• Endodontics (ex: periapical lesions, MB canal detection, vertical root fractures..etc.)

• Orthodontic and orthopedic imaging applications (ex: landmark detection, determining growth and 
development by cervical vertebrae stages)

• Restorative and cariology applications (ex: caries detection)

• Identification and classification of dentomaxillofacial pathologies (ex: cysts and tumors)

..and many other ongoing research projects!.



Aims: 

1- Primary aim: 

To evaluate the effectiveness of a commercially available deep-

learning (DL) software, namely DENTI.AI, in supporting dentists 

with the identification of apical radiolucencies on periapical 

radiographs.

2- Secondary aims:

Assess the efficacy of DL in subsets categorized based on the 

size of the lesion and the treatment status of the tooth.



Methods: 

Part 1: Case Selection and 
Ground Truth IRB (#19-1430) CBCT referral log 

Endodontic referrals 
between “08/2014-

03/2019”
n=367 cbcts

Reports written by board 
certified radiologists.

Key terms: “apical rarefying 
osteitis” or “apical 

radiolucent lesions” or 
“apical widening of the 

PDL space”. 



Methods: Cont'd

Once a case was considered eligible to be included in 
the sample, the patients’ records were searched for a 
corresponding, same-site IO periapical radiograph. 



We collected 184 positive intraoral radiographs after applying appropriate inclusion and exclusion criteria. These radiographs were split into two subsets: 
1- A model-tuning subset of 54 images

2- A testing subset of 130 images
Additionally, 132 periapical radiographs with sound apical periodontium were collected and utilized as control radiographs. From the control and testing subsets, a 

final testing subset of 68 images was randomly selected utilizing a random number generator.



CBCT as Ground Truth :

Prior to the execution of our study, no research had been conducted 

on periapical radiolucencies using CBCT as a reference standard. 

Earlier studies relied on consensus panels, which is deemed to be less 

reliable compared to the CBCT reference standard.



• Left image: detection and verification of apical radiolucency presence and measurements on CBCT (Right upper image) Same-site IO

radiograph - acquired within a 6 months period (Right-down) CBCT-guided ground-truth annotations of the IO radiograph by 

addition of location and extent tags.



Example of Ground Truth Annotation 
Process:



Reader Study Execution: 

Eight dentists performed a 
cross-over reading scenario. 

They analyzed the same 
testing subset collection of 68 
images under two conditions; 
without and with the aid of AI 

predictions. 

Washout period of more than 
one month.

They were requested to 
include confidence score tags 
in order to indicate their level 

of confidence in their 
decision. A confidence rating 
scale ranging from 1 to 5 was 

utilized for this purpose. 



Statistical Analysis and Results: 
• Primary endpoint: Alternative Free-Response Receiver Operating Characteristic 

(AFROC) AUC metric was evaluated for comparing the performance of the 

readers for the two reading scenarios.

• Secondary endpoint analysis included the following metrics: sensitivity (by case) 

specificity (by case), and sensitivity (by lesion). 



Statistical Analysis and 
Results: 

Localization of lesion accuracy (AFROC-AUC), specificity and sensitivity (by 
lesion) detection demonstrated improvements in the AI-aided session in 
comparison with the unaided reading session. 



Subgroup performance analysis revealed an increase in sensitivity for 
small radiolucencies and in radiolucencies located apical to 
endodontically treated teeth.

Statistical Analysis and 
Results: 



Conclusions: 
• The study shows that the DENTI.AI system has the potential to assist dentists in localizing 

and detecting apical lesions on intraoral images. 

• However, conducting further research with a more diverse and extensive range of cases 

and readers would provide stronger evidence regarding the impact of this DL tool. 
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