FGAI4H-O-047

Berlin, 31 May – 2 June 2022

Source:	Institute for Molecular Medicine Finland – FIMM	
Title:	Workshop: TG-POC & TG-Histo - When is AI good enough for implementation in diagnostics?	
Purpose:	Discussion	
Contact:	Johan Lundin Institute for Molecular Medicine Finland – FIMM University of Helsinki, Finland Karolinska Institutet, Sweden	E-mail: johan.lundin@helsinki.fi
Abstract:	This PPT contains a presentation from the TG-POC & TG-Histo workshop on "Validation of annotations for AI models within the scope of point-of- care diagnostics (POC)"	

When is AI good enough for implementation in diagnostics?

Johan Lundin, MD, PhD Research Director Institute for Molecular Medicine Finland – FIMM University of Helsinki, Finland and Professor of Medical Technology Karolinska Institutet, Sweden

Disclaimer

> Founder, co-owner and board member of Aiforia Technologies

www.fimm.fi

Courtesy of Tristan Harris, Center for Humane Technology

FIMM Johan Lundin

Human chess world champion learns from games played by AI

AlphaZero, self-taught Al-based world champion of chess*

Magnus Carlsen, the current human champion of chess

Medical experts are likely to benefit from AI in a similar way

Johan Lundin

AI will impact all medical fields where an expert makes a visual interpretation

Pathology

Microbiology

Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

Radiology

Dermatology

Crude estimate: minimum >7-8 billion visual diagnostic assessments globally per year

6

When is AI good enough for implementation in diagnostics?

- > When AI achieves the same accuracy or exceeds the current gold standard?
- > When AI analyses an order of magnitude more samples than a human expert within a particular time period?
- > When AI complements the human expert and finds a significant number of targets that otherwise would have been missed?
- > When AI is the only alternative in a setting with shortage of experts?

Ground truth and gold standard tests

- The term ground truth refers to the underlying absolute state of information
- > The gold standard strives to represent the ground truth as closely as possible.
- In machine learning and information retrieval, "ground truth" is the preferred term even when classifications may be imperfect
- > The gold standard is assumed to be the ground truth

Definition of a gold standard test

In medicine and statistics, a **gold standard test** is usually the diagnostic **test** or benchmark that is the best available under reasonable conditions. Other times, a **gold standard** is the most accurate **test** possible without restrictions.

Gold standard (test) - Wikipedia https://en.wikipedia.org > wiki > Gold_standard_(test)

Performance of a gold standard test

- A hypothetical ideal "gold standard" test has a sensitivity of 100% with respect to the presence of the disease and a specificity of 100%.
- > In practice, there are sometimes no true gold standard tests.
- > Currently, no gold standard tests exist for deep learning applied to pathology or microscopy
- According to the literature, AI-based algorithms typically reach a good to excellent diagnostic accuracy as compared to the ground truth, but the ground truth is rarely a real gold standard

Challenges in the development of gold standard for machine learning in pathology

- > Samples and data
- Annotations
- >Algorithms
- > Other challenges

Challenges related to samples, data and annotations

- > Limited access to sample images with associated clinical data
 - Share data, form joint projects, use federated or swarm learning
- > Lack of annotated images
 - Create public libraries and common repositories of annotated images
- > Biased data due to incompleteness or lack of diversity
 - Strive for completeness of data, collect from many centers
- > Variable quality, artifacts and heterogeneity of samples
 - Perform quality control (with AI?), re-cut, re-stain, re-scan, color calibrate
 - ..or include all types of artifacts and variabilities in the training set

Sample variability in a breast cancer tissue microarray

Variability due to the scanner and camera

Johan Lundin

www.fimm.fi

Variable quality of annotations

FİMM

Consistency and representativeness of ground truth -deep learning algorithms just as good as their teacher?

Ground truth digital samples crucial in development of medical AI

Johan Lundin

More complicated patterns – e.g. Gleason grade in prostate cancer

There is a risk that AI will be just another subjective "expert" - example of automated grading of Gleason

Other challenges related to AI for diagnostics

- > Ownership and access to the images
 - Create public libraries of annotated images for developers
- > What to do with rapidly improving and updated algorithms?
 - Allow algorithm performance to be a moving target
 - FDA white paper
- > How to handle tens or hundreds of AI:s for the same purpose?
 - Create consensus algorithms? Use swarm learning to adjust parameters?

Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)

Discussion Paper and Request for Feedback

www.fimm.fi

Human vs machine

- > Understand context> Reproduce assessment
- Handle outliers
- > Find rare events
- Generalize
- >Achieve high throughput

When is an AI algorithm good enough?

<mark>⟩</mark> ि;

- Needs to outperform or supplement human experts in at least one of the following: Sensitivity, speed, reproducibility
- > Generalizability needs to be established
 - robustness to artifacts, outliers and local variations in protocols
- Superiority shown in prediction of clinical endpoints rather the replication of annotations?
 - Outcome and biomarker supervised learning

Outcome supervised learning in colorectal and breast cancer

Digitized tissue samples from cancer patients with known outcome of cancer i.e. survivor or non-survivor Comparison of human expert-based and Al-based outcome prediction Deep learning outperformed experienced pathologists in outcome prediction ¹⁻³

¹Bychkov et al, Scientific Reports 2018;8:3395 ²Turkki et al, Breast Can Res Tr 2019;177:41-52 ³Bychkov et al, J Pathol Informatics 2022;13:9

Karolinska Institutet ONCOSYS Research Program Faculty of Medicine, UH

www.fimm.fi

Human and machine combination: Sensitive AI algorithm – specific human observer

- > Example of application to neglected tropical diseases for better access to diagnostics
- > Assisted detection of helminth eggs in stool samples and verification by human expert

Johan Lundin

Global Health Action 2017; 10:1337325.

www.fimm.fi

Human **AND** machine?

- > Understand context
- Reproduce assessment
- >Handle outliers
- > Find rare events

Johan Lundin

Generalize

FİMM

>Achieve high throughput

Some arguments and thoughts as a conclusion

- > The quality, selection and annotation of training data for AI is crucial
- > How could we get more reliable ground truth?
- There is a risk that we end up with hundreds of Als for the same purpose but with unclear accuarcy
- Ground truth based on human observation and annotation will always be subjective
- Alternative ground truths, such as sample level diagnosis, patient outcome and response to treatment should be explored

nature reviews cancer

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature reviews cancer > viewpoint > article

Viewpoint | Published: 17 September 2021

Artificial intelligence in cancer research, diagnosis and therapy

Olivier Elemento 🗠, Christina Leslie 🗠, Johan Lundin 🗠 & Georgia Tourassi 🗠

Nature Reviews Cancer (2021) Cite this article

2977 Accesses | 110 Altmetric | Metrics

FIMM Johan Lundin

Lundin Group, FIMM

EAM

Institute for Molecular Medicine Finland Nordic EMBL Partnership for Molecular Medicine

Building a bridge from discovery to medicine