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Abstract

IMPORTANCE Cervical cancer is highly preventable but remains a common and deadly cancer in
areas without screening programs. The creation of a diagnostic system to digitize Papanicolaou test
samples and analyze them using a cloud-based deep learning system (DLS) may provide needed
cervical cancer screening to resource-limited areas.

OBJECTIVE To determine whether artificial intelligence–supported digital microscopy diagnostics
can be implemented in a resource-limited setting and used for analysis of Papanicolaou tests.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, cervical smears from 740
HIV-positive women aged between 18 and 64 years were collected between September 1, 2018, and
September 30, 2019. The smears were digitized with a portable slide scanner, uploaded to a cloud
server using mobile networks, and used to train and validate a DLS for the detection of atypical
cervical cells. This single-center study was conducted at a local health care center in rural Kenya.

EXPOSURES Detection of squamous cell atypia in the digital samples by analysis with the DLS.

MAIN OUTCOMES AND MEASURES The accuracy of the DLS in the detection of low- and high-
grade squamous intraepithelial lesions in Papanicolaou test whole-slide images.

RESULTS Papanicolaou test results from 740 HIV-positive women (mean [SD] age, 41.8 [10.3] years)
were collected. The DLS was trained using 350 whole-slide images and validated on 361 whole-slide
images (average size, 100 387 × 47 560 pixels). For detection of cervical cellular atypia, sensitivities
were 95.7% (95% CI, 85.5%-99.5%) and 100% (95% CI, 82.4%-100%), and specificities were 84.7%
(95% CI, 80.2%-88.5%) and 78.4% (95% CI, 73.6%-82.4%), compared with the pathologist
assessment of digital and physical slides, respectively. Areas under the receiver operating
characteristic curve were 0.94 and 0.96, respectively. Negative predictive values were high
(99%-100%), and accuracy was high, particularly for the detection of high-grade lesions. Interrater
agreement was substantial compared with the pathologist assessment of digital slides (κ = 0.72) and
fair compared with the assessment of glass slides (κ = 0.36). No samples that were classified as high
grade by manual sample analysis had false-negative assessments by the DLS.

CONCLUSIONS AND RELEVANCE In this study, digital microscopy with artificial intelligence was
implemented at a rural clinic and used to detect atypical cervical smears with a high sensitivity
compared with visual sample analysis.
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Key Points
Question Can point-of-care digital

microscopy with artificial intelligence–

based sample assessment be

implemented at a clinic in a resource-

limited setting where access to

pathologists is limited and used to

analyze Papanicolaou test results?

Findings In this proof-of-concept

diagnostic study, Papanicolaou test

results from 740 women were collected,

digitized at a rural clinic in Kenya, and

analyzed with a deep learning algorithm

to detect atypical samples. The

sensitivity for detection of atypia was

high (96%-100%), with higher

specificity for high-grade lesions (93%-

99%) than for low-grade lesions

(82%-86%), and no slides manually

classified as high grade were incorrectly

classified as negative.

Meaning The results of this study

suggest that advanced digital

microscopy diagnostics, supported by

artificial intelligence, are feasible to use

in rural, resource-limited settings for

detection of abnormal cells in

Papanicolaou tests.
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Introduction

Inadequate access to microscopy diagnostics is a problem in limited-resource areas and impairs the
diagnosis of common and treatable conditions.1 Although significant advances have been made in
digital microscopy diagnostics at the point of care (POC), their clinical implementation has been
slow.2 Here, we propose a digital diagnostics system in which microscopy slides are digitized at the
POC and uploaded using local data networks for analysis with an artificial intelligence model based on
deep learning. Cervical cancer remains a common and deadly cancer in areas without screening
programs.3 During the next decade, the disease incidence is expected to increase, and the yearly
mortality is expected to double, with the largest burden of disease occurring in sub-Saharan Africa.4

Ultimately, vaccinations against human papillomavirus (HPV)5 have the potential to significantly
reduce the disease incidence, but given that the full benefits of even the most efficient vaccination
programs will take decades to be fully realized, millions of women remain at risk.6 Therefore,
screening tests remain essential,7 and innovative POC diagnostic solutions are needed.8

Conventional cytology screening (Papanicolaou test analysis) can drastically reduce the incidence
and mortality of cervical cancer, but the manual analysis of samples is labor intensive,9 is prone to
variations in sensitivity and reproducibility, and requires medical experts to analyze the samples10,11;
this makes the process difficult to implement in resource-limited settings.12 Human papillomavirus
infections, which are the causative agent for cervical cancer, can be detected using polymerase chain
reaction assays with high sensitivity and reproducibility. However, because most HPV infections are
transient, the specificity for precancerous lesions is low.13,14 In high-resource areas, both molecular-
and cytology-based screening methods are commonly used and are often combined (ie, cotesting)
to improve the diagnostic accuracy.15,16 Digital methods have been proposed to facilitate the visual
analysis of Papanicolaou tests, but the development of fully automated systems has been
challenging.17,18 Although semiautomated systems for Papanicolaou test screening have been
developed,19 they are limited by the need for bulky, expensive laboratory equipment20-22 and are not
suitable for use at the POC or in resource-limited settings.

Recently, deep learning–based algorithms have been used for a large number of medical image-
analysis applications, with levels of performance even surpassing human experts in certain tasks.23-26

However, studies on deep learning algorithms for analysis of cervical cytology smears have mainly
analyzed only small areas of samples with instruments not suitable for POC usage. To our knowledge,
no research has been conducted on the analysis of digital whole-slide images of entire Papanicolaou
tests, captured in more challenging real-world clinical environments.26-29 Thus, this technology has
not yet been applied in basic laboratories that are able to perform simple staining procedures but lack
access to molecular testing, where the need for improved diagnostics is highest.28

In this study, we developed and implemented a novel POC digital diagnostic system at a rural
clinic in Kenya, a country where cervical cancer is the leading cause of female cancer–related death.30

Papanicolaou smears were collected at the clinic and digitized with a portable slide scanner, and
whole-slide images were uploaded to a cloud platform using the local mobile data network for
development and validation of a deep learning system (DLS). We measured the diagnostic accuracy
for the detection of common forms of cervical squamous cell atypia with the DLS and validated the
results by comparing them with the visual assessment of samples by independent pathologists.

Methods

Approval for the current study was issued by the Ethical Review Committee at the National
Commission for Science, Technology and Innovation (Pwani University, Nacosti, Kenya). Before study
participation, eligible patients were given information in English and Swahili in written and oral form
about the purpose of the study and the testing procedure. Patients were allowed to ask questions
and were informed that participating in the study did not in any way affect their other treatment at
the clinic, and withdrawal from the study was possible at any point. Local research personnel ensured
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that the patients understood the information provided. After this, signed consent from patients
wishing to participate was obtained. Patients were compensated for travel expenses to the sample-
acquisition site and informed of the test results, but they were not offered monetary compensation
for study participation. This proof-of-concept diagnostic accuracy is reported in accordance with the
Standards for Reporting of Diagnostic Accuracy (STARD) reporting guideline.

Study Design, Patient Cohort, and Collection of Samples
The research site for this study was a local clinic (Kinondo Kwetu Health Services Clinic, Kinondo,
Kwale County) in rural Kenya (approximately 40 km south of Mombasa) (Figure 1). Papanicolaou
smears were acquired from 740 women attending a regional HIV-control program (eFigure in the
Supplement) between September 1, 2018, and September 30, 2019, from patient volunteers who
fulfilled the inclusion criteria (nonpregnant, aged between 18 and 64 years, confirmed HIV positivity,
and signed informed consent acquired) (eTable 1 in the Supplement). Eligible patients were assigned
a study number, after which Papanicolaou tests were obtained from the patients by trained nurses
and fixed and stained with the Papanicolaou staining method (eAppendix 1 in the Supplement).31

After this, the staining quality was evaluated by light microscopy, after which the slides were digitized
in the laboratory adjacent to the sample collection room at the research site. The slides were then
stored in slide boxes and transported to the pathology laboratory (Coast Provincial General Hospital,
Mombasa, Kenya). Patient records were stored digitally using the secured and password-protected
web-based data-collection software REDCap (Vanderbilt University), running on a password-
protected, encrypted local server in a locked room. Paper forms with patient data were stored in
locked cabinets in a locked room at the clinic, accessible only to study personnel. Both digitized and
physical slides were pseudonymized using study numbers, and no personal identifiers were uploaded
to the cloud-based image-management platform. In cases of abnormal Papanicolaou tests, treatment
expenses were covered by study funding, and treatment was arranged by a gynecologist (J.M.) in
accordance with national guidelines.32

Digitization of Slides at the Research Site
After the acquisition and staining of samples, Papanicolaou smears were digitized with a portable
whole-slide microscope scanner (Grundium Ocus [Grundium]) (Figure 1) and deployed in a laboratory
space adjacent to the room at the local clinic where the samples were collected. The device features
an 18-megapixel image sensor with a 20× objective (numerical aperture: 0.40) and captures images
with a pixel size of 0.48 μm. The microscope scanner was connected to a laptop computer over a
wireless local area network connection and operated via the web browser interface, Chrome
(Google). The coarse focus for the scanner is adjusted manually, after which the built-in autofocus

Figure 1. Practical Aspects of the Study Methodology

Study site locationA Slide processingB Slide digitization equipmentC

1. 2.
3.

4.

A, Study site location in Kenya. B, Slide processing, including staining bench and hood. C, Slide digitization equipment, including (1) laptop computer with access to the slide-
management platform, (2) slide scanner, (3) mobile-network router, and (4) Papanicolaou test microscopy slide.
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routine is used for fine focus. Image files were saved on the local computer in tagged image file
format and converted to the wavelet file format (Enhanced Compressed Wavelet [Hexagon
Geospatial]) using a compression ratio (1:16) that was previously shown to preserve sufficient detail
to not significantly alter the image-analysis results,33 before uploading to the image-management
and machine learning platform, Aiforia Hub (Aiforia Technologies Oy). Uploading of slides was
performed primarily via the 3G and 4G mobile-network router, Huawei B525S (Huawei
Technologies), operating on the local mobile network, Safaricom, in Nairobi, Kenya, with a subset of
slides uploaded via the in-house asymmetric digital subscriber line connection. The compressed size
of the digitized slides ranged from 0.2 GB to 0.8 GB, resulting in a turnaround time for sample
uploading of approximately 10 to 40 minutes over the mobile network (upload speed 0.6-1.0 MB/s)
or asymmetric digital subscriber line connection (upload speed 0.6-1.2 MB/s) at the research site.

Development of a DLS for Detection of Cervical Cell Atypia
To develop a DLS for the detection of cervical cell atypia in the digitized Papanicolaou smears, we
used a commercially available machine learning and image-analysis platform, Aiforia Create (Aiforia
Technologies). Using this platform, we trained an algorithm based on deep convolutional neural
networks to detect low-grade squamous intraepithelial lesions (LSILs) and high-grade squamous
intraepithelial lesions (HSILs) in the Papanicolaou smear digital whole slides. The samples series was
split into a training and tuning set (n = 350) and a validation set (n = 390). Digitized slides measured
approximately 100 000 × 50 000 pixels, corresponding to roughly a standard microscope glass
slide (25 mm × 50 mm); ie, the entire Papanicolaou smear was scanned. Training was performed by
a researcher (O.H.) assisted by a cytotechnologist specialized in cervical cytology screening, using
manually defined representative regions of the digitized slides of the training series (Figure 2).
Regions (n = 16 133, with cross sections of approximately 25-100 μm) were annotated visually and
included areas of both normal cervical cellular morphology and various degrees of atypia. Training of
the DLS used 30 000 iterations with a predetermined feature size of 30 μm, a weight decay
parameter of 0.0001, 20 minibatches, a learning rate of 0.1, and 1000 iterations without progress as
the early-stop limit. Training data were augmented by using image perturbations. Access to the
trained model is possible remotely to analyze samples directly at the POC. Detailed configurations
and hyperparameters for training of the model are described in eAppendix 1 in the Supplement.

Expert Visual Analysis of Samples
The analysis of physical slides was performed at the pathology laboratory at Coast Provincial General
Hospital (Mombasa, Kenya) with light microscopy and performed by a trained pathologist (N.M.).
Slides classified as inadequate were excluded from the validation series (n = 29) (eFigure in the
Supplement). Slides that were adequate for analysis (n = 361) were reviewed by the pathologist
according to the Bethesda classification system.34 For the analyses in this study, slides with findings
recorded in the cytological report as LSIL or higher (ie, HSIL or higher) were included as slides with
significant cervical cell atypia. The expert assessment of the digital slides was performed by remotely
located, independent experts. For this process, all digital slides in the validation series were initially
screened by a cytotechnologist with experience in cervical cytology screening, and digital slides with
detected cellular atypia were reviewed by a pathologist with experience in Papanicolaou test analysis
(L.K.). In accordance with generally accepted quality-control guidelines for cervical cytology
screening,35 10% of slides that were assessed as negative in this initial cytological screening were
randomly selected and submitted for re-evaluation by the pathologist. The samples were reviewed
by the 2 pathologists independently without access to results from the other pathologist or the DLS.

Statistical Analysis
General-purpose Stata statistical software, version 15.1 (StataCorp LLC) was used for analysis of the
results. Statistical power calculations were performed with a sample-size formula,36 assuming a
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mean (SD) prevalence (Pr) of 8% (2%) for significant atypia in the study population37 with an α level
of .05 (and correspondingly Z1−α/2 = 1.96) and a precision parameter (ε) of 0.10:

nSensitivity = 
Z 1−α/2 SN(1−SN )2

ε2 ×Pr

nSpecificity = 
Z 1−α/2 Sp(1−Sp )2

ε2 × (1 − Pr )

where SN represents anticipated sensitivity; SP, anticipated specificity; and Z1−α/2, the standard
normal deviate corresponding to α.

These calculations indicated a required target sample size of 304 for sensitivity and 19 for
specificity with the assumed disease prevalence. All statistical tests were 2-sided unless otherwise
stated, and the results were reported with 95% CIs. Evaluation of the performance of the algorithm
was performed by calculating the area under the receiver operating characteristic curve (AUC) after
plotting the measured true-positive rate (sensitivity) vs the false-positive rate (1 − specificity) for
different thresholds of slide-level positivity. Interobserver agreement was measured using κ
statistics.

Results

Detection of Cervical Cell Atypia in Digital Papanicolaou Smears With the DLS
Papanicolaou tests from 740 HIV-positive women (mean [SD] age, 41.8 [10.3] years) were collected.
Following the training of the DLS and exclusion of 29 inadequate slides (7%) classified as unevaluable
by the local pathologist (eAppendix 1 in the Supplement), 361 slides remained in the validation series
(average size, 100 387 × 47 560 pixels). The expert assessment of digitized slides revealed 19 slides
(5%) with low-grade atypia, 28 slides (8%) with high-grade atypia, and 314 slides (87%) that were
negative for significant squamous cell atypia (defined as atypical squamous cells of undetermined
significance or lower). With these results as reference, the DLS achieved a classification accuracy for
general atypia as measured by AUC of 0.94, a sensitivity of 95.7% (95% CI, 85.5%-99.5%), and a
specificity of 84.7% (95% CI, 80.2%-88.5%) at the selected threshold (Figure 3). The AUC for
detection of slides containing HSILs or higher-grade lesions was 0.97, with a sensitivity of 85.7%
(95% CI, 67.3%-96.0%) and a specificity of 98.5% (95% CI, 96.5%-99.5%). For the detection of
slides containing only LSILs, the AUC was 0.86, with a sensitivity of 84.2% (95% CI, 60.4%-96.6%)
and a specificity of 86.0% (95% CI, 81.8%-89.5%) (Table). In these analyses, slides with
discrepancies in the type of atypia (such as low-grade slides that were classified as high grade, or vice
versa) were considered to be of equal statistical value to slides with atypia that were classified as
negative. Overall, the DLS classified 266 slides (74%) as negative, 61 slides (17%) as positive for
low-grade atypia, and 34 slides (9%) as positive for high-grade atypia. Compared with the expert
assessment of the digital slides, 2 slides with low-grade atypia, but no high-grade slides, were falsely
classified as negative by the DLS (<1%). Four slides (1%) with high-grade atypia were classified as low
grade by the DLS (Table). The negative predictive value was high for general atypia (266 of 268
[99.3%; 95% CI, 97.3%-99.9%]), low-grade atypia (294 of 297 [99.0%; 95% CI, 97.1%-99.8%]), and
high-grade atypia (328 of 332 [98.8%; 95% CI, 96.9%-99.7%]). The measured interrater agreement
between the DLS and visual scoring of the digital slides was substantial (κ = 0.72; 95% CI, 0.62-0.82;
P < .01) (eTable 2 in the Supplement).
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Comparison of DLS Results With the Pathologist Glass-Slide Cytodiagnosis
Next, we evaluated the performance of the DLS as compared with the assessment of physical slides
by the local pathologist. The report from the pathology laboratory classified 342 slides (95%) as
negative for significant squamous cell atypia, 14 (4%) as positive for low-grade atypia, and 5 (1%) as
positive for high-grade atypia. With reference to these results, the DLS achieved high sensitivity for
general atypia (100%; 95% CI, 82.4%-100%) and for high-grade atypia (100%; 95% CI,
47.8%-100%), with corresponding specificities of 78.4% (95% CI, 73.6%-82.4%) and 93.3% (95%
CI, 90.1%-95.6%), respectively (Table). Specificity was moderate for low-grade atypia (82.4%; 95%

Figure 2. Overview of Sample Processing and Algorithm Training and Validation

740 Papanicolaou test samples
collected, digitized, and
uploaded to cloud server

740 Included in physical-slide
cytodiagnosis, conducted
by local pathologists

350 Included in
training series

390 Included in
validation series
and analyzed
with DLS

390 Analyzed by
cytotechnologist
and pathologist

361 Included in
digital-slide
cytodiagnosis

29 Ineligible
samples
excluded

Comparison and analysis of results

Sample processing workflowA

Annotation processB Validation analysisC

Training of DLS using training regions to detect cervical cellular atypia Analysis of samples and visualization of results using color overlays

Training
sample

High grade

Low grade

Normal

Validation
sample

HSIL LSIL
Analyzed area:
101 120 × 44 288 pixels
(44.5 × 19.5 mm)
Area HSIL, 0.21 mm2

Area LSIL, 0.42 mm2

A, Flowchart illustrating the sample-processing workflow, showing stages from the
collection of samples to the analysis of digital images and physical slides. B, Schematic
view of the annotation process used for creation of the digital-slide data for training of
the deep learning system (DLS). C, Validation analysis of a digitized image of a whole slide

(Papanicolaou test) with the DLS, showing calculations of areas of atypia, with locations
of atypia in a heatmap of the digital slide, and identification of individual cells, with color
overlays (red for high-grade atypia and green for low-grade atypia). HSIL indicates high-
grade squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions.
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CI, 78.0%-86.3%), but sensitivity was lower (21.4%; 95% CI, 4.7%-50.8%) because 11 of the 14 slides
that were classified as low-grade atypia in the cytological report from the pathology laboratory were
classified as high-grade atypia by the DLS. The interrater agreement between the DLS and the
physical slide assessment was fair (κ = 0.36; 95% CI, 0.24-0.49; P < .01) (eTable 2 in the
Supplement), but no atypical slides were falsely classified as negative by the DLS. The DLS achieved
high AUCs for detection of general atypia (0.96), high-grade atypia (0.97), and low-grade atypia
(0.94) (Figure 3). The negative predictive value was high for general atypia (266 of 266 [100%; 95%
CI, 98.6%-100.0%]), high-grade atypia (332 of 332 [100%; 95% CI, 98.9%-100.0%]), and low-grade
atypia (286 of 297 [96.3%; 95% CI, 93.5%-98.1%]) (Table).

Figure 3. Detection of Atypia in Cervical Smears by Automated Deep Learning System (DLS) and by Manual Assessment
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physical slides by a local pathologist (B). Receiver operating characteristics curves were
calculated for a range of operating thresholds for the DLS. C, View of a digitized sample

on the cloud-based slide-management platform, with a magnified view of a detected
atypical cellular cluster at 40× digital magnification. D, Examples of atypical cells marked
by the experts in the digitized slides (yellow) and the corresponding regions extracted
from the DLS results, with cells assessed as high-grade atypia colored in red and
low-grade atypia colored in green.
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Discussion

In this study, we implemented a POC digital diagnostics system at a peripheral clinic in Kenya and
evaluated it for the analysis of Papanicolaou smears. The DLS achieved high accuracy for the
detection of cervical squamous cell atypia, with AUCs of 0.94 to 0.96 and sensitivities of 96% to
100%, compared with the visual interpretation of digitized and physical slides. With the visual
assessment of digitized slides as a reference, the number of false-negative assessments by the DLS
was low, with 2 low-grade slides incorrectly classified as negative (although 4 high-grade slides were
falsely classified as low grade). Compared with the visual analysis of the physical slides by the local
pathologist, the DLS sensitivity was high for general atypia (100%) and high-grade atypia (100%) but
low for low-grade atypia (21%), given that 11 of 14 physical slides that were assessed as low grade
were classified as high grade by the DLS. The visual interpretation of Papanicolaou smears is known
to be subjective, especially when assessing low-grade findings,10,38 and accordingly, we observed
variation between the experts’ assessments of slides, with a lower threshold for the classification of
findings as high grade by the pathologist who assessed the digitized slides. The DLS was trained with
assistance from the experts who analyzed the digital slides, which possibly explains why the DLS
classification showed higher agreement compared with these results. Notably, however, none of the
slides that were classified as negative by the DLS were classified as atypical in the cytodiagnosis of
the physical slides. Previous studies have reported encouraging results with the deep learning–based
analysis of smaller cropped images from Papanicolaou smears26,27,29,39 that were digitized with
conventional slide scanners, but clinical application requires the examination of substantially larger
sample areas.28 In this study, we used routine samples collected at the clinic, and correspondingly,
the whole-slide images were magnitudes larger than those previously analyzed, measuring on
average 100 387 × 47 560 pixels; thus, the total number of pixels analyzed corresponded to
approximately twice the number in the entire ImageNet database (>14 million images of everyday
objects) at commonly used resolutions.40 Papanicolaou smears may contain very limited numbers of
isolated atypical cells, and robust algorithms are necessary to reliably detect such cells in these large
and complex samples. In this study, we investigated the use of a DLS as a potential screening tool
with a relatively low threshold for the classification of slides as atypical, to ensure high sensitivity at
the potential expense of specificity; this method resulted in relatively high rates of false-positives for
low-grade atypical slides. However, because this type of algorithm can operate using multiple
configurations, sensitivity and specificity could be adjusted to match clinical requirements, with high
sensitivity for screening purposes or higher specificity for confirmatory diagnostics. Importantly, our

Table. Detection of Cervical Cell Atypia With the Deep Learning System in Digitized Papanicolaou Tests, Compared With Expert Assessments of Digitized
and Physical Slidesa

Diagnostic comparison

% (95% CI)

No. (%)

True False

Sensitivity Specificity Positive Negative Positive Negative
Digitized-slide cytodiagnosis

General atypia 95.7 (85.5-99.5) 84.7 (80.2-88.5) 45 (12.5) 266 (73.7) 48 (13.3) 2 (0.6)

High-grade atypia 85.7 (67.3-96.0) 98.5 (96.5-99.5) 24 (6.6) 328 (90.9) 5 (1.4) 4 (1.1)b

Low-grade atypia 84.2 (60.4-96.6) 86.0 (81.8-89.5) 16 (4.4) 294 (81.4) 48 (13.3) 3 (0.8)

Glass-slide cytodiagnosis

General atypia 100.0 (82.4-100.0) 78.4 (73.6-82.6) 19 (5.3) 268 (74.2) 74 (20.5) 0

High-grade atypia 100.0 (47.8-100.0) 93.3 (90.1-95.6) 5 (1.4) 332 (92.0) 24 (6.6) 0

Low-grade atypia 21.4 (4.7-50.8) 82.4 (78.0-86.3) 3 (0.8) 286 (79.2) 61 (16.9) 11 (3.0)c

a Sensitivity and specificity results from the deep learning system are shown with the
associated 95% CIs. Numbers of false-negative, false-positive, true-negative, and true-
positive assessments are shown with the corresponding percentage of the total
number of slides in the validation series (n = 361).

b Four slides identified as having high-grade atypia were classified as low-grade atypia by
the deep learning system.

c Eleven slides identified by the local pathologist as low-grade atypia were classified as
high-grade atypia by the deep learning system.
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findings demonstrate how a frontline diagnostic system based on POC digital microscopy with deep
learning–based analysis of microscopy slides can be deployed in rural clinical settings. As the DLS
can be accessed remotely, the proposed system enables an end-to-end pipeline for digital analysis of
samples at the POC. To our knowledge, no other study has evaluated this technology using whole
slides that have been collected, stained, digitized, and uploaded using a mobile data network in
similar settings. Overall, we achieved high negative predictive values for the detection of atypical
slides in these demanding settings, suggesting that the method may be useful for screening purposes
in resource-limited environments. For this application, clinical implementation could reduce sample
analysis workloads to allow clinicians to focus on verifying potentially abnormal slides and could
exclude most slides (approximately 70%) while retaining high sensitivity for atypical slides. By
combining this technology with primary POC molecular testing for HPV,8,14 the number of slides that
needs to be analyzed could be reduced even further, which would be essential in low-resource areas
where the number of practicing pathologists is low and the cervical cancer incidence is increasing.4,41

By using methods such as self-sampling for both molecular- and cytology-based testing,42 the
dissemination of tests to large populations could be feasible. Although the final cost of implementing
a system like this is not yet possible to determine precisely, we estimate the per-sample equipment
and reagent costs to be in the range of $2.00 to $5.00 US dollars (eAppendix 2 in the Supplement).
As this technology provides a platform for general-purpose digital microscopy, it is likely to be
applicable also for diagnostics of other diseases that are common in resource-limited areas and high-
risk populations, such as neglected tropical parasites,43 sexually transmitted infections,44 and
malignant neoplasms.45-47 In this way, opportunities are created for integrated disease control.

Limitations
Because this is an early study, it has limitations. The DLS was benchmarked against 2 independent
experts for the assessment of samples, but for the results to be directly comparable with other
screening modalities, the ideal reference standard would be cervical biopsies with histologically
confirmed precancers, which were not available here. Owing to the subjective nature of
Papanicolaou smear cytology, this means that the results from both experts are not directly
comparable with each other. Furthermore, even though the total number of slides collected was
relatively large, the prevalence of slides with significant atypia was limited. Although these results are
promising, increasing the amount of training data would likely improve the performance of the DLS
and would be required before confirmatory diagnostic applications. Moreover, as this was a single-
center study, the results might differ if the sample acquisition and preparation procedures are
altered, and further work is needed to prospectively validate these results. Furthermore, because we
evaluated only Papanicolaou smears from HIV-positive women, the results might differ owing to
varying levels of prevalence in other populations (eAppendix 2 and eTable 3 in the Supplement).

Conclusions

In this diagnostic study, we developed a new system for deep learning–based digital microscopy at
the POC, which was used for the analysis of cervical smears in cervical cancer screening. Results
suggest that the detection of squamous cell atypia with the technology was feasible, with high
sensitivity for slides demonstrating atypia, particularly for slides showing high-grade atypia. The
clinical utilization of this technology could reduce the sample analysis workload for microscopists and
provide a platform for general-purpose digital pathology, which is implementable in rural areas. As
such, the technology here could create new opportunities to facilitate the diagnostics of a variety of
diseases that are still underdiagnosed, especially in low-resource settings.
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