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Context and Motivation



Big Goal: Safe and reliable AI systems

Observation: Decades of AI research has produced a plethora of
tools and methods that deal with safety and reliability

Small Goal: Organize existing tools into meaningful action areas
and map them along the life cycle of an AI4H system



Why Robustness?



Huber: ”Insensitivity to small deviations from the
assumptions” [Huber, 1981]

Dietterich: Known unknowns and unknown unknowns
[Dietterich, 2017]

Russell: Validity [Russell et al., 2015]

Safe AI: Adversarial robustness, FAT, misspecification
problems

Working def.: No gross, unexpected errors under slight changes of
the operating environment; benign error handling



The AI System Life Cycle and Robustness Risks





Four Action Areas to Mitigate Robustness Risks





Data Fidelity

Impose desiderata on data that are used as input to an AI system

Examples

I Datasheets for datasets [Gebru et al., 2018]
I Normalization and standardization, e.g.

I Zero-centering
I Decorrelation
I Whitening



Robust Training

Expose an AI system to changes in the data environment during
training that would otherwise be likely to induce robustness risks
during deployment

Examples

I Adversarial training [Madry et al., 2017]

min
θ

E
x,y∼D

[max
δ∈S

J(x + δ, y)] (1)

I Stability training [Zheng et al., 2016]

L(x, x′;θ) = L0(x;θ) + αLstability(x, x′;θ) (2)



Robustness Validation

Verify the robustness of an AI system in a controlled testing
environment

Examples

I Hypothesis testing (if amenable)

I Perturbation and adversarial stress tests
[Hendrycks and Dietterich, 2019, Madry et al., 2017]

I FAT misspecification testing, e.g. predictive equality
[Hardt et al., 2016]

E[d(x)|y = 0, g(x)] = E[d(x)|y = 0]



Alarm Systems

Flag unusual behavior of the AI system during deployment

Examples

I Outlier tests via generative modelling [Meng and Chen, 2017]

I Attribution methods (see [Ancona et al., 2017] for overview),
e.g.

Rj = xj
δyc
δxj

I Uncertainty quantification, e.g. [Gal and Ghahramani, 2016]

Eq(y∗|x∗)(y
∗),Vq(y∗|x∗)

(
y∗
)



Recommendations and Outlook



I Integrate established robustness tools into the AI4H system
life cycle

I Screen for additional methods that can be included in the
action areas
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