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	Abstract:
	[bookmark: _GoBack]This document is an update of document B-013, it contains an updated use-case proposal for testing the clinical validity of machine learning-based diagnostics for Alzheimer’s disease (AD). The goal would be to find a classification algorithm able to discriminate the different types of dementias in the early stage of the disease. It also answers the questions that will help the focus group to assess if the use case it ready for the next steps.
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Project Title: for testing the clinical validity of machine learning-based diagnostics for Alzheimer’s disease (AD).

Overview
This use case provides an empirical basis for testing the clinical validity of machine learning-based diagnostics for Alzheimer’s disease (AD) and related dementia syndromes (defined by DSM V as ‘Neurocognitive disorders’) using real world brain imaging and genetic data. With increased life expectancy in modern society, the number of individuals who will potentially become demented is growing proportionally. Current estimates count world-wide over 48 million people suffering from dementia bringing the social cost of care to 1% of world’s gross domestic product – GDP. These numbers led the World Health Organisation to classify neurocognitive disorders as a global public health priority.
Compared to visual assessment, automated diagnostic methods based on brain imaging are more reproducible and have demonstrated a high accuracy in separating AD from healthy aging, but also the clinically more challenging separations between different types of neurocognitive disorders. Similarly, although ApoE genotypes carrying higher risk for AD are easily obtainable, this information is rarely integrated in machine learning-based diagnostics for AD. Although encouraging, implementations into clinical routine have been challenging.
Relevance/Impact
The lack of strategy how to map the evolving clinical phenotypes on a multi-dimensional dynamic description of brain damage and the inconsistent use of routinely collected data across clinical entities hamper efforts for validation of machine-learning based diagnosis and prognosis in neurocognitive disorders.  
Our proposal systematically addresses previous limitations by using “real-world” imaging and genetic data obtained in the clinical routine that are analysed with predictive machine learning algorithms, including benchmarking and cross-validation of the learned models. The intended integrative framework will assign a level of probability to each of several possible diagnosis to provide an output that is readily usable and interpretable by clinicians. Beyond this immediate impact on clinical decision making and patients care, our flexible strategy allows for scaling the framework by integrating further clinical variables - neuropsychological tests, imaging and CSF biomarkers, to name but a few that will lead to new areas of research developments.
The proposal is novel, has translational importance and is potentially applicable to epidemiological, pharmacological and therapeutic studies in all clinical domains seeking to explore various aspects of health Big Data and validate their accuracy as biomarkers. It will not only advance our scientific understanding of ageing-associated cognitive decline and neurocognitive disorders. It will also provide a model for infrastructure and technology for the creation of large-scale projects in different fields of research for the benefit of patients, clinical and basic science researchers.
Existing work
Our own and others’ studies on structural imaging already considered more than two diagnostic options or used probabilistic rather than categorical diagnostic labels. These pattern recognition machine-learning based approaches run on a standard PC and rely on a set of labelled training data - for example structural magnetic resonance imaging (MRI) and reliably established diagnostic label for each subject - to diagnose new cases in the absence of expert radiologists. They also permit a fully automated detection and quantification of specific pathologies (e.g. white matter hyperintensities or microbleeds.
Our expertise in building and using platform for data federation (PI Ferath Kherif) is currently used by the Medical Informatics Platform of the Human Brain Project. We provided software solution that connect patients’ data - clinical scores, neuroimaging, CSF biomarkers, to be than analysed with set of methods ranging from automated feature extraction to statistical methods and machine learning algorithms for data exploration, statistical modelling, predictive machine learning and visualisation of results. 

Feasibility
We have a proven track record in applying supervised classification methods for prediction of clinical outcome and explaining the variance of the data. We previously applied support-vector machine (SVM) classification methods to anatomical data for diagnosis of different dementia subtypes. However, multivariate pattern recognition methods have been applied primarily to uni-modal data, motivating a novel methodological approach to accommodate multi-modal data. Recently, we used this methodology to build predictive models for healthy ageing and showed that the mean prediction error was significantly lower when combining all measurements. 

Data Availability -
The primary data are already available and growing in volume. Data will include both real world patient’s data and data collected from research cohorts. The data will include clinical scores, diagnostic, cognitive measures and biological measures (PET, MRI, fMRI, lab results). 
The data include  patients on more than 6 000 patients on dementia (one of the largest patients’ cohort) different stages of the disease (subjective complains, mild impairments or demented) 
Patients Count and Diagnoses
The table below provides details about the cohort population 

	
	Diagnostic- Labels :

	Total count
	Alzheimer's Disease
	Mild cognitive impairment (MCI)
	Cognitively normal (CN)
	Other Mixed Dementia (MD)

	6787
	2082
	1165
	1779
	1761

	
	30.67%
	17.16%
	26.21%
	25.94%



Demographics
Age
The graphs below provide the ages distribution on all the participants, by gender and by disease categories. 
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Neuroimaging Data-Brain scans
Magnetic resonance (MR) images strongly depends on the quality of the input data. Multi-centre studies and data-sharing projects need to take into account varying image properties due to different scanners, sequences and protocols
Images format requirements:
· Must be full brain scans
· Must be provided either in DICOM or NIFTI format
· The images must be high-resolution (max. 1.5 mm) T1-weighted sagittal images.
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Neuroimaging-Derived Features
The Neuromorphometric Processing component (SPM12) uses NIfTI data for computational neuro-anatomical data extraction using voxel-based statistical parametric mapping of brain image data sequences:
a) Each T1-weighted image is normalised to MNI (Montreal Neurological Institute) space using non-linear image registration SPM12 Shoot toolbox
b) The individual images are segmented into three different brain tissue classes (grey matter, white matter and CSF)
c) Each grey matter voxel is labelled based on Neuromorphometrics atlas (constructed by manual segmentation for a group of subjects) and the transformation matrix obtained in the previous step. Maximum probability tissue labels were derived from the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labelling”. These data were released under the Creative Commons Attribution-Non-Commercial (CC BY-NC. The MRI scans originate from the OASIS project, and the labelled data was provided by Neuromorphometrics, Inc. under an academic subscription
The full list of the features is listed in the appendix. 
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Data quality and collection process
The data have been obtained under each country ethical and regulation policies, including patient informed consents. The data have been annotated using best clinical practice and described using Common data Element and international classifications.
The Quality Check evaluates essential image parameters, such as signal-to-noise ratio, inhomogeneity and image resolution. It evaluates images for problems during the processing steps. It allows for comparing quality measures across different scans and sequences.





Benchmarking - 
A large representative sample will be created and will be use for the creation of the models. The models will be then validated (see benchmarking methods below) on the real-world undisclosed patient’s data.
The benchmarking process will be based using the state-of-the-art methods for the methods used by the ML community, but also methodology recommended for clinical trial. Thus, assessment of clinical validity involves measurement of the following metrics derived from the confusion matrix: 
· Test accuracy: F1 score
· Clinical sensitivity: ability to identify those who have or will get the disease = TP/(TP+FN)
· Clinical specificity ability to identify those who do not have or will not get the disease =TN/(FP+FN)
· Clinical precision the probability that the disease is present when the test is positive =sensitivity x prevalence / (sensitivity x prevalence + (1-specificity) x (1-sensitivity) ) 
In addition, we propose to integrate clinician feedback by measuring the Clinical utility. This measure assesses the impact of the automated decision in term of impact on the clinical path of the patients, impact on the treatment and also impact on the relatives …).
Organizers
CHUV-LREN has extensive expertise in collecting clinical data, curating and pre-processing these data to the highest standard. We have also developed own methods for machine learning. The PI will be available for program duration and committed in fruitful collaboration between "clinical experts", and machine learning expert and to bring high value from the data and personalised tools for disease prognoses.  

Answers to focus group questions
a) In which specific form will you provide the data (which file format, how is the database structured)?

The data will be provided in a structured database which contains a features table (which contains all the measurements and the diagnostics labels) and a meta-data table (which includes the description of the data according to a standard ontology)  
b) How will you provide the labels/annotations of the single samples in your data set? What output variables are possible?
Yes, we will provide the current diagnostics according to the ICD10 classification of diseases
c) Are you ready to show a few labelled samples, as actual files on your computer, in Lausanne?
Yes  
d) How many labelled samples can you actually provide? (This is something the focus group needs to know.)
We can provide access to up to 6000 records.


APPENDIX 1.
List of features. 
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	Diagnostic
	alzheimerbroadcategory
	categorial

	Demography
	Age
	continous

	
	Gender
	categorical

	
	educationlevel
	categorical

	
	educationyears
	continous

	CSF-Biomarkers
	ab1_40
	continous

	 
	ab1_42
	continous

	 
	tau
	continous

	genetic
	apoe4
	categorical

	Neuropsychology Score
	adas
	continous

	
	MMSE
	continous

	
	MOCA
	continous

	Brain Features (Volumes)
	leftaccumbensarea
	continous

	
	leftacgganteriorcingulategyrus
	continous

	
	leftainsanteriorinsula
	continous

	
	leftamygdala
	continous

	
	leftangangulargyrus
	continous

	
	leftaorganteriororbitalgyrus
	continous

	
	leftbasalforebrain
	continous

	
	leftcalccalcarinecortex
	continous

	
	leftcaudate
	continous

	
	leftcerebellumexterior
	continous

	
	leftcerebellumwhitematter
	continous

	
	leftcerebralwhitematter
	continous

	
	leftcocentraloperculum
	continous

	
	leftcuncuneus
	continous

	
	leftententorhinalarea
	continous

	
	leftfofrontaloperculum
	continous

	
	leftfrpfrontalpole
	continous

	
	leftfugfusiformgyrus
	continous

	
	leftgregyrusrectus
	continous

	
	lefthippocampus
	continous

	
	leftinflatvent
	continous

	
	leftioginferioroccipitalgyrus
	continous

	
	leftitginferiortemporalgyrus
	continous

	
	leftlateralventricle
	continous

	
	leftliglingualgyrus
	continous

	
	leftlorglateralorbitalgyrus
	continous

	
	leftmcggmiddlecingulategyrus
	continous

	
	rightmfcmedialfrontalcortex
	continous

	
	leftmfcmedialfrontalcortex
	continous

	
	leftmfgmiddlefrontalgyrus
	continous

	
	leftmogmiddleoccipitalgyrus
	continous

	
	leftmorgmedialorbitalgyrus
	continous

	
	leftmpogpostcentralgyrusmedialsegment
	continous

	
	leftmprgprecentralgyrusmedialsegment
	continous

	
	leftmsfgsuperiorfrontalgyrusmedialsegment
	continous

	
	leftmtgmiddletemporalgyrus
	continous

	
	leftocpoccipitalpole
	continous

	
	leftofugoccipitalfusiformgyrus
	continous

	
	leftopifgopercularpartoftheinferiorfrontalgyrus
	continous

	
	leftorifgorbitalpartoftheinferiorfrontalgyrus
	continous

	
	leftpallidum
	continous

	
	leftpcggposteriorcingulategyrus
	continous

	
	leftpcuprecuneus
	continous

	
	leftphgparahippocampalgyrus
	continous

	
	leftpinsposteriorinsula
	continous

	
	leftpogpostcentralgyrus
	continous

	
	leftpoparietaloperculum
	continous

	
	leftporgposteriororbitalgyrus
	continous

	
	leftppplanumpolare
	continous

	
	leftprgprecentralgyrus
	continous

	
	leftptplanumtemporale
	continous

	
	leftputamen
	continous

	
	leftscasubcallosalarea
	continous

	
	leftsfgsuperiorfrontalgyrus
	continous

	
	leftsmcsupplementarymotorcortex
	continous

	
	leftsmgsupramarginalgyrus
	continous

	
	leftsogsuperioroccipitalgyrus
	continous

	
	leftsplsuperiorparietallobule
	continous

	
	leftstgsuperiortemporalgyrus
	continous

	
	leftthalamusproper
	continous

	
	lefttmptemporalpole
	continous

	
	lefttrifgtriangularpartoftheinferiorfrontalgyrus
	continous

	
	leftttgtransversetemporalgyrus
	continous

	
	leftventraldc
	continous

	
	lipidemiacomorbidity
	continous

	
	minimentalstate
	continous

	
	rightaccumbensarea
	continous

	
	rightacgganteriorcingulategyrus
	continous

	
	rightainsanteriorinsula
	continous

	
	rightamygdala
	continous

	
	rightangangulargyrus
	continous

	
	rightaorganteriororbitalgyrus
	continous

	
	rightbasalforebrain
	continous

	
	rightcalccalcarinecortex
	continous

	
	rightcaudate
	continous

	
	rightcerebellumexterior
	continous

	
	rightcerebellumwhitematter
	continous

	
	rightcerebralwhitematter
	continous

	
	rightcocentraloperculum
	continous

	
	rightcuncuneus
	continous

	
	rightententorhinalarea
	continous

	
	rightfofrontaloperculum
	continous

	
	rightfrpfrontalpole
	continous

	
	rightfugfusiformgyrus
	continous

	
	rightgregyrusrectus
	continous

	
	righthippocampus
	continous

	
	rightinflatvent
	continous

	
	rightioginferioroccipitalgyrus
	continous

	
	rightitginferiortemporalgyrus
	continous

	
	rightlateralventricle
	continous

	
	rightliglingualgyrus
	continous

	
	rightlorglateralorbitalgyrus
	continous

	
	rightmcggmiddlecingulategyrus
	continous

	
	rightmfcmedialfrontalcortex
	continous

	
	rightmfgmiddlefrontalgyrus
	continous

	
	rightmogmiddleoccipitalgyrus
	continous

	
	rightmorgmedialorbitalgyrus
	continous

	
	rightmpogpostcentralgyrusmedialsegment
	continous

	
	rightmprgprecentralgyrusmedialsegment
	continous

	
	rightmsfgsuperiorfrontalgyrusmedialsegment
	continous

	
	rightmtgmiddletemporalgyrus
	continous

	
	rightocpoccipitalpole
	continous

	
	rightofugoccipitalfusiformgyrus
	continous

	
	rightopifgopercularpartoftheinferiorfrontalgyrus
	continous

	
	rightorifgorbitalpartoftheinferiorfrontalgyrus
	continous

	
	rightpallidum
	continous

	
	rightpcggposteriorcingulategyrus
	continous

	
	rightpcuprecuneus
	continous

	
	rightphgparahippocampalgyrus
	continous

	
	rightpinsposteriorinsula
	continous

	
	rightpogpostcentralgyrus
	continous

	
	rightpoparietaloperculum
	continous

	
	rightporgposteriororbitalgyrus
	continous

	
	rightppplanumpolare
	continous

	
	rightprgprecentralgyrus
	continous

	
	rightptplanumtemporale
	continous

	
	rightputamen
	continous

	
	rightscasubcallosalarea
	continous

	
	rightsfgsuperiorfrontalgyrus
	continous

	
	rightsmcsupplementarymotorcortex
	continous

	
	rightsmgsupramarginalgyrus
	continous

	
	rightsogsuperioroccipitalgyrus
	continous

	
	rightsplsuperiorparietallobule
	continous

	
	rightstgsuperiortemporalgyrus
	continous

	
	rightthalamusproper
	continous

	
	righttmptemporalpole
	continous

	
	righttrifgtriangularpartoftheinferiorfrontalgyrus
	continous

	
	rightttgtransversetemporalgyrus
	continous
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