



# Prediction of Psychiatric Multimorbidity in a Large Pediatric Sample



### **Prof. Nicolas Langer University of Zurich**

Department of Psychology Methods of Plasticity Researcch

### Dr. Stefan Haufe Charité

Universitätsmedizin Berlin Berlin Center for Advanced Neuroimaging (BCAN)



3rd meeting of FG-Al4H EPFL SwissTech Convention Center, Ecublens (Lausanne), Switzerland, 22-25 Jan. 2019



# Outline

- Relevance
- Existing Work
- Current Challenges Solutions
- Data availability
  - Sample
  - Data (neurophysiology (EEG), cognitive and behavior)
- Data Quality
  - Technical Validation
  - Test-retest preliminary results
- Benchmarking
- Organizers



### The Final Goal: Biological Tests for Psychiatry

previous approaches with structural and functional MRI



Psychiatric Diagnosis





**Psychiatric Diagnosis** 



# Relevance of the proposal

- **Psychiatric disorders** are among the most common and debilitating illnesses across the lifespan.
- Epidemiologic studies indicate that 70% of all diagnosable psychiatric disorders begin prior to age 24 (Kessler et al., 2005).
- **Diagnosing** psychiatric developmental disorders:
  - needs multiple prolonged interviews conducted by a psychiatrist with the child and its close relatives.
  - procedure is relatively costly.
  - remains highly subjective (low inter-rater reliability).
- Al algorithms promise to overcome the subjectivity of the manual diagnosis.
- An Al based/supported diagnosis would offer a **reliable**, **objective and costworthy** diagnostic method and finally potentially also **shorten the diagnosing time**.



# **Existing Work**

- Neurophysiological (EEG) biomarkers:
  - Theta-beta ratio (TBR) in attention deficit hyperactivity disorder (e.g., Magee et al., 2005, Lenartowicz and Loo., 2014).
  - Frontal alpha asymmetry for depression (e.g. van der Vinne et al., 2017, Olbrich and Arns, 2013)
- The majority of existing studies have focused on differentiating between children with an **isolated psychiatric disorder** and typically developing children.
  - However, this line of research does not reflect the real-life situation:
    - over 75% of children with a clinical diagnosis have multiple psychiatric disorders = multimorbidities.
- Furthermore, most of the previous studies employ traditional univariate statistics. **Multivariate machine learning/AI approaches** have a great potential to overcome the limitations of univariate approaches.



### **Current Challenges**

- Focus on one diagnosis vs. healthy controls
  - in real life 70% multimorbidity
- Univariate vs. multivariate statistics
- Small sample size (not enough data)
- No objective and standardized preprocessing for EEG data
- Unknown reliability of EEG measures
- Not enough computing power
- Too many variables for human mind/eye
  - multi dimensional data space

nature neuroscience

### Building better biomarkers: brain models in translational neuroimaging

Choong-Wan Woo<sup>1–4</sup>, Luke J Chang<sup>5</sup>, Martin A Lindquist<sup>6</sup> & Tor D Wager<sup>3,4</sup>



#### PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?  $_{\rm S\ Kapur^1,\ AG\ Phillips^2\ and\ TR\ Insel^3}$ 



# Solution: AI & large representative samples

### Availability of Big Data



Dr. Michael Milham



### Advanced AI Algorithms



### Growth in Computing Power





2018

2006





### Data availability: Sample Healthy Brain Network (HBN) sample

#### Training Data:

- current release: 1602 subjects
- Age 5-21 years
- Population: typical developing children and children with psychiatric developmental disorders (~70/ multimorbidities)



- Subsample of training data
- Future release: approx. 500 subjects / year









### Data availability: Sample Healthy Brain Network (HBN) sample

#### Training Data:

- current release: 1602 subjects
- Age 5-21 years
- Population: typical developing children and children with psychiatric developmental disorders (~70/ multimorbidities)

#### Test Data:

- Subsample of training data
- Future release: approx. 500 subjects / year



#### Participant Diagnosis, by Category





# Data availability: Data

- Demographics
  - Age, gender
- Cognitive Data
  - e.g. WISC
- Behavioral Data
  - Questionnaires (SWAN)
- resting EEG
  - Raw data
  - Preprocessed data
  - EEG features
    - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
  - Source reconstruction
  - Cortical thickness



- Prediction of Diagnosis
  - DSM-V consensus diagnosis
- Annotation Quality:
  - based on the decision of a clinical team
  - all interviews and materials conducted as basis for the DSM-5 consensus diagnosis
  - conducted by licensed clinicians





# Data availability: Data

- Demographics
  - Age, gender
- Cognitive Data
  - e.g. WISC
- Behavioral Data
  - Questionnaires (SWAN)
- resting EEG
  - Raw data
  - Preprocessed data
  - EEG features
  - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
  - Source reconstruction
  - Cortical thickness

#### Cognitive & Behavioral Data:

- Demographics
- Cognition / Intelligence (e.g. WIAT, WISC-V, NIH-Toolbox)
- Medical History (e.g. addiction family history)
- Family Structure, Stress and Trauma (negative life events, parenting)
- Personality Traits (Big 5, self-esteem)
- Coping Strategies (communication skills, interpersonal factors)
- Physical Measures (e.g. bio-electric impedance analysis, BMI, Metabolic rate, heart rate, blood pressure, height, weight, handedness,...)
- Social Status (SES, parents education, family structure)

Nr. of features: ~270 (self-/ parent-/ teacher-report)





# Data availability: Data

- Demographics
  - Age, gender
- Cognitive Data
  - e.g. WISC
- Behavioral Data
  - Questionnaires (SWAN)
- resting EEG
  - Raw data
  - Preprocessed data
  - EEG features
    - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
  - Source reconstruction
  - Cortical thickness



#### Raw EEG:

- 5 min.
- Eyes closed (40 s) & eye open (20 s)
- 128 electrodes (Geodesic EGI system)
- sampling rate 500 Hz
- Nr. of features: ~ 150'000



### Prerequisite for Biomarker Research: Reliability of measures

### Prerequisite for Reliability: Standardized Preprocessing

- Demographics
  - Age, gender
- Cognitive Data
  - e.g. WISC
- Behavioral Data
  - Questionnaires (SWAN)
- resting EEG
  - Raw data
  - Preprocessed data
  - EEG features
    - e.g. theta-beta ratio, alpha asymmetry



Automagic

https://github.com/methlabUZH/automagic

#### Preprocessed EEG:

• Number of features: ~ 150'000



### **Developing Methods for EEG analysis**





### **EEG Connectivity Analysis**



#### Haufe & Langer in prep.

Poulsen, Pedroni, Langer, Hansen (2018)



## **EEG** features

#### Frequency Domain:

- Frequency Power analysis
  - (e.g. theta/beta ratio; alpha assymetry; 1/f noise, alpha peak)
- Number of features: ~ 122



- Age, gender
- Cognitive Data
  - e.g. WISC
- Behavioral Data
  - Questionnaires (SWAN)
- resting EEG
  - Raw data
  - Preprocessed data
  - EEG features
    - e.g. theta-beta ratio, alpha asymmetry



#### Time Domain:

#### Microstates:

- "MS are stable spatial configurations of the electric field. These spatially stationary microstates might be the basic building blocks of information processing." (Lehmann, 1978)
- Number of features: ~ 40

# Functional Connectivity:

- Imaginary part of coherency
- Time-reversed Granger causality
- Number of features: ~ 9216





### Data Quality: Validation Analysis

Technical Validation (N = 126)





### Data Quality: Test-retest Reliability

Preliminary results (N = 30)



С







# Benchmarking

Task:prediction of multiple disorders from demographic, phenotypical<br/>(cognitive and behavioral) and EEG data

Training: on public HBN data

Benchmarking: on future releases of HBN data sets (approx. 500 subjects / year)

#### Implementation: participants submit executable code

- Standardized input (data folder) and output (binary classification matrix)
- Container architecture (docker/kubernetes)
  - Free choice of development tools for participants
  - Safe for organizers
- Cloud computing: GCP/AWS or similar
- Challenge platform: crowdai.org/Kaggle etc.





### **Performance metrics**



Main metric (used for ranking): multi-task accuracy

$$ACC = 1 - \frac{1}{ND} \sum_{n=1}^{N} \sum_{d=1}^{D} |Y_{n,d}^{\text{true}} - Y_{n,d}^{\text{pred}}|$$

Secondary metrics: F1-score, sensitivity, specificity, precision, recall

Multi-task metrics for continuous labels (severity scores) available.



Idea: continuous prediction challenge

- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available

#### Initial training phase





Idea: continuous prediction challenge

- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available





Idea: continuous prediction challenge

- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available





Idea: continuous prediction challenge

- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available





# Feasibility

- Close collaboration with the ongoing HBN initiative (support of Dr. Michael Milham)
- Training data already publicly available
- Good data quality
- Expertise regarding signal processing of EEG and statistical analyses
- Previous studies have demonstrated predictive value of EEG data to discriminate between children with an isolated psychiatric developmental disorder and control children



### Organizers

### Prof. Nicolas Langer

Bio:

- PhD in Neuroscience & Psychology at University of Zurich
- Postdoctoral Fellow at Harvard Medical School
- Endeavor Scientist at Child Mind Institute
- Now: Assistant Professor with Tenure Track at University of Zurich

#### Research interest: development of new methods for neuroimaging, EEG, eye-tracking

- design multi-level, multi-modal paradigms to study cognitive performance and perception
- Clinical focus: psychiatric developmental disorders (e.g. ADHD)
- Open Science Advocate (open software, open data)

Interested in solving big data neuro-health problems using AI as part of a collaborative/community driven effort.





### Organizers

### Dr. Stefan Haufe

Bio:

- PhD in Computer Science/Machine Learning at TU Berlin
- Marie Curie Postdoctoral Fellow at Columbia University
- Now ERC Research Group Leader at Charité

#### Research interest: analysis of EEG data using signal processing/AI

- Reconstruction of brain sources and estimation of brain connectivity
- Prediction of mental/clinical states using AI, interpretation of AI models
- Clinical focus: psychiatric and neurological disorders

Interested in solving big data neuro-health problems using AI as part of a collaborative/community driven effort.



# THANK YOU FOR YOUR ATTENTION

Prof. Nicolas Langer and Dr. Stefan Haufe have no conflict of interest