Applying Lessons Learned to V2X Communications for China
Qualcomm’s technology enables the Connected Car experience

Source: GSMA Intelligence, Apr. '14; UN, Apr. '14
©2013-2014 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.
Applications and End User Perspectives

Standards Perspectives (LTE and 802.11p)

Synthesizing Perspectives: Going Forward
Qualcomm Vision: Advanced driver assistance systems (ADAS)

Computer Vision and Sensor fusion + V2X communication

- Long range radar
- Short range radar
- Near / Far infrared camera
- Multi mode radar
- Ultrasonic sensors / 360° view camera
- V2V
- V2V
- V2C
Summing the Necessary Developments: Moving from ADAS to Fully Cooperative Automation

Complex Environment, Complicated Requirements:

Japan Energy ITS: > 99 % Packet Reception Probability (“two shots”) + 50 Hz Control Messages

In Vehicle Infotainment and Active Safety

Connected Automation \(P = P(CV + AV) \)
Alert! Accident 2 miles ahead. Heavy stop and go traffic ahead. Would you like me to drive?

Global Trend: Pilot deployments of C-ITS applications are establishing a foundation for large-scale deployments, handled by a variety of over the air technologies.
All these depicted applications have a foundation of documented research and progress toward Standardization.

Illustrative Projects

- US Connected Vehicle Reference Implementation Architecture:
 - INFLO and other Dynamic Mobility Applications
 - CACC
- German CONVERGE Project
- Connected Vehicle Model Deployment
- Amsterdam Group: Day One Use Cases
- Japan ITS SPOT
- US Potential FMVSS 150 (V2V Communications Mandate)

Illustrative Standards Activities

- CCSA V2X
- 3GPP V2X
- TIAA
- C-ITS
- US: SAE DSRC Technical Committee, IEEE 1609 WG
- Europe: ETSI ITS + C2C-CC, CEN 278
- ISO TC204 WG 16 and 18

Illustrative Deployment Coalitions

- European Amsterdam Group
- US V2I Deployment Coalition (ITE, AASHTO, USDOT, ITSA)

Global Trend: Pilot deployments of C-ITS applications are establishing a foundation for large-scale deployments, handled by a variety of over the air technologies.
Vision: Improvements in LTE-Direct can enable LTE technologies address safety-critical and other applications and depending on the region of the world, in tandem with or instead of DSRC.
Vision: Improvements in LTE-Direct can enable LTE technologies address safety-critical and other applications and depending on the region of the world, in tandem with or instead of DSRC.
Agenda

1. Applications and End User Perspectives
2. Standards Perspectives (LTE and 802.11pP)
3. Synthesizing Perspectives: Going Forward
V2X Services Delivered via LTE

Rapid Standardization in the telecommunications Industry

- **Overall vision is LTE V2V communication for safety purposes with cellular technology**
 - A variant of the already-standardized LTE-Direct (ProSe, 3GPP R12)
 - The timeline to V2V standardization is suitable for many V2X deployments – including connected automation

Table

<table>
<thead>
<tr>
<th>2014 and early</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTE Direct</td>
<td>R13</td>
<td>R14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA1</td>
<td>SA1</td>
<td>SA1</td>
<td>R14</td>
<td></td>
</tr>
<tr>
<td>SA2 V2X</td>
<td></td>
<td></td>
<td>V2X</td>
<td></td>
</tr>
<tr>
<td>SA3 / CT V2X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAN R13 study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAN R14 V1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCSA				
LTE based				
V2X Study				
Requirement				
SA1 = Services				

C-ITS				
Nat1 Std.				
PHY/MAC				
SA2 V2X				
SA3 / CT V2X				
RAN R13 study				
RAN R14 V1				
SA2 = Architecture				

TIAA				
V2X Study				
Report				
V2V/V2I				
Trial				
SA3 = OTA				
SA4 / Equipment				
Cooperative V2X				

US				
Safety Pilot				
Deployment				
NPRM				
SA5 = Network				
TIAA				
RAN Access				

EU				
ETSI CEN/ISO				
Release 1				
Standard				
Release 2				
C-ITS Standard				
NPRM				
SA6 = Tools				
EU				
Connected				
Vehicle				
Pilot				
Deployments				
Interoperable				
SA7 = Security				

US allocated dedicated spectrum 5850-5925MHz in 2003, EU allocated 5875-5905MHz in 2008
LTE-D for Automobiles

Leverages LTE RAN
For timing, resource allocation (to LTE Direct), as well as user authentication

Uses LTE Uplink
Uplink resources in LTE FDD system or dedicated frames in LTE TDD system

Features LTE Air Interface
Discovery: Periodic high-power beacon for long range detection

1 Source: Qualcomm simulations; Assumes 20MHz system with ~2,000 expressions
©2013-2014 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.
LTE Framework Evolution for V2X

D2D Discovery and D2D Communications Frameworks can be Extended to Satisfy V2X Use Cases

• D2D Discovery
 − Needs longer message sizes
 − Needs faster duty cycles
 − Is not an ideal model for variable size messages

• D2D Communications
 − Handles large and variable size messages
 − Supports fast duty cycles
 − Needs better handling of half duplex and collisions
 − Needs more flexible retransmission configuration

Main items to address
Standardization at Application Layer

Enables Harmonized Applications

- Standardization moving towards finalizing the overall protocol stack
 - Different congestion control designs under debate
 - Security framework design deferred
 - End-to-end minimum performance requirement finalized

US: SAE J2945/1 On-Board Performance Requirements – 1st Ballot
 - Different congestion control designs under debate
 - Security framework design deferred
 - End-to-end minimum performance requirement finalized

EU: Release 1 C-ITS Standard → Release 2 and Urban ITS Applications

For maximum acceptance, the LTE V2V solution should be able to use other service layers (US and EU)

Source: Vehicular ad hoc Networks Standards, Solutions, and Research Chapter 5: Messages Sets for Vehicular Communications, Lin and Misener
Agenda

1. Applications and End User Perspectives
2. Standards Perspectives
3. Synthesizing Perspectives: Going Forward
Key Consideration: Availability of Spectrum

Safety communications must be delivered via common spectrum

Mobile network operators would be able to deliver differentiating non-safety V2V applications on their spectrum.

Could be new operator, existing operator or combination.
Going Forward

Great opportunity for China to substantially improve road safety and reduce congestion

• Around the world, concepts and standards are congealing
• V2X testbeds have been in operation for > 10 years → Initial deployments are occurring
• LTE Direct for V2X is being conceived to be:
 − Complimentary to DSRC for some use cases in some regions
 − Used instead of DSRC for all use cases in other regions
• Key issues for V2X deployment will be
 − Spectrum for interoperability
 − Conducive regulatory environment
 − Solid business models
• Future concepts and technologies will likely enable cooperative automation
Qualcomm connectivity solutions are part of the current and future car.
Thank you

Follow us on:

For more information, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

©2014 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All trademarks of Qualcomm Incorporated are used with permission. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable.

Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm’s engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business.