ITU Report The case of Korea: the quantification of GHG reduction effects achieved by ICTs

May 2013

ITU Symposium on ICTs, the Environment and Climate Change

- I. Background and introduction
- II. Approach and methodology
- **III. A case study: Real-time Navigation (RTN)**
- **IV. ICT GHG potential abatement in Korea (of republic)**

Background and Introduction

Importance of ICT toward GHG emission abatement has been studied globally

"

Gartner report, 2007

ICT Industry is responsible for 2% of global carbon emissions ""

GeSI: <SMART 2020>, 2008

Identified global emissions abatements in 2020 is five times of its own footprint ⁹⁹

Background: domestic

Growth in ICT industry with increasing proportion of GDP

ICT Industry has grown to be a core industry covering 10.35% of GDP in 2011

ICT, a key implementation tool for climate change mitigation

Gevelop green technologies as future growth engines

-Korea's five-year plan for Low Carbon Green Growth

Green Climate Fund

A host country of the secretariat of the UN Climate Fund

"A study on social GHG abatement by the use of ICT"

The purpose of the study was to;

Demonstrate the potential GHG abatement of "Greening by ICTs" solutions in Korea between 2011 and 2020.

The scope of the study included;

- Role of ICT in climate change mitigation in national level;
- Contribution of ICT services to abate GHG emission;
- Development of methodology to calculate GHG emission abatement; and
- Quantification of potential GHG abatement in Korea.

Approach and methodology

Approach: ITU-T L.1410 Part 2

According to Part 2, we have applied Gap Analysis between Reference Product System and Target ICT service.

Comparisons between the systems on the basis of achieving the same functional units

We have applied quantification formulas by categories and second order effects based on Part 2.

Sector	Categories	Quantification
Transport	Movement of people	Energy abatement = Unit energy consumption for each type of fuel × Fuel consumption r educed
	Movement of goods	Energy abatement = Unit energy consumption for each type of fuel × Fuel consumption reduced
Buildings	Improved efficiency of office space	Energy abatement = Unit energy consumption × Amount reduced
	Power consumption & Energy consumption	Energy abatement = Unit energy consumption for each type of fuel × Fuel consumption reduced
	Storage of goods	Energy abatement = Unit energy consumption × Amount reduced
	Improved work efficiency	Energy abatement = Energy consumption per m ² × Area used per person (m ²) × Workload improved (person-year)
Industry	Consumption of goods	Energy abatement = Energy consumption to produce one unit of the product × Amount reduced
	Waste	Energy abatement = Unit energy consumption for each type of waste × Amount reduced

Scope Boundary: Analyzed 14 ICT services

A case study: Real-time Navigation

1 Identify the functional unit and effects

- Definition: A GPS-based service that provides real-time information of optimal routes and traffic condition to the destination.
- Functional unit: Movement of people from A to B in certain conditions such as time and cost.

Types of Effects	Positive effects	Negative effects	Impact on GHG emission
First Order Effects		As usage of RTN increase, production and network usage for RTN increases	(+) Increase
Second Order Effects	As driving time and distance decreases, fuel consumption decreases		(-) Decrease
Other Effects	As life span of vehicles increases, production for vehicles decreases	As users' spare time increases, energy consumption from other industry increases	(+) and (-) Ambiguous

1 2 3 4 5

2 Define scope and boundary

Boundary for transport

Applicable vehicles for installing RTN

Non-business cars, vans, trucks and business cars (assumed as taxis)

Boundary for population/consumer

Possible consumers for using RTN

The LBS users among mobile internet service subscribers

No. of vehicles that are able to install RTN (assumed that every possible consumer possesses his own vehicle)	9 million vehicles
Average annual travel distance per vehicle*	14 thousand km

Mobile internet service subscribers**	48 million subscribers
% of internet service subscribers using LBS service**	19.3%
People who are able to use RTN	9 million people

* 2008, Korea Transportation Safety Authority

** 2010, Korea Internet & Security Agency

1 2 3 4 5

3 Develop two different scenarios

Reference product system (baseline)

Impacts on travel distance and fuel consumption while "possible consumers" don't use RTN

ICT service (project scenario)

Impacts on travel distance and fuel consumption while "possible consumers" install and use RTN

No. of vehicles that are able to install RTN	9 million drivers (or vehicles)
Average annual travel distance per vehicle	14 thousand km
Total distance travelled before adopting RTN	139billion km

Travel distance reduction after adopting RTN	2billion km
% of fuel reduced**	8.7%
% of travel distance navigated by RTN*	16%

* <T-map user statistics>, SK telecom

** <Nissan SKY Project> , Nissan Motor

4 Estimate the GHG abatement in base year

By adopting ITU-T quantification category "Movement of people", reduced travel time in 2011 after implementing RTN is;

Reduced distance by RTN	2 billion km
Actual Average Mileage	8.32km/l
Fuel saved by the reduced distance travelled	239,886.66kl
Emission factor of fuel	2.47 tCO2e/I
Emission abatement by RTN in base year	592,520 tCO2e

5 Project the GHG abatement by 2020

Considering about,

RTN service users

 2011
 2020

 Travel distance navigated by RTN`
 16%
 70%

The number of usage per user

	2011	2020
Internet service subscribers using LBS service	19.3%	90%

Growth in automobile industry

	CAGR
Growth rate of car registered	3.28%

Potential GHG abatement by RTN by 2020

(unit: tCO2e)

5

Potential domestic GHG abatement

Conclusion

Potential GHG abatements by adopting ICT services is expected to be more than 5 times of its direct footprint.

The significance of the study was;

- The first case study which fully applied L.1410 Recommendation Part 2: and
- The first study on assessing GHG abatements by the use of ICT in Korea (of Republic).

The limitation of the study was;

Absence of LCA approach for first order effect.

The recommendation for further study is;

- Prioritization of 14 ICT services in terms of possibility of standardization;
- Applying LCA approach for first order effect; and
- Planning for developing CDM methodology.

Thank you

