

The Forum on Environmental Efficiency for Artificial Intelligence and other Emerging Technologies

Session 2: Accessing the environmental benefits of emerging technologies

Olga Memedovic
Chief
Business Environment, Cluster and Innovation Division

Table of Contents

- Materials Use and its environmental consequences
- How to access environmental benefits of Al 2.
- Linkages between AI and material intensity 3.
- **Examples** of AI use for more sustainable industrial production 4.
- 5. The Role of AI and frontier technologies in achieving the **Sustainable Development Goals**
- **UNIDO** Publications 6.

Investing in material productivity as crucial area for improving environmental objectives

→global material productivity has grown substantially slower than labor and energy productivity and has not improved in the last 20 years

Figure 4 Global resource productivity (material, energy and CO2 emissions) & labour productivity

Figure 5 Global material extraction 1970 – 2017, million tons

Source: United Nations Environment Programme, 2019

Raw material costs as an indicator for resource use within an economy

- → Investment in technologies for more efficient use of resources → economically & ecological beneficial
- → Federal Statistical Office of Germany estimates material costs at 40% in the manufacturing industry

Figure 8 Cost structure of entire added value in automotive industry

Source: Automobile Engineering Partners 2014 Note: Labor costs defines as gross income of employees (incl. social security costs)

f

How to access environmental benefits of Al

- 1. Enhanced operational efficiency
 - → Labour efficiency ↑
 - Lean Management
 - Digital Kaizen
- 2. Al for greater environmental efficiency
 - → Material efficiency ↑
 - Carbon intensity tracing
 - New materials
 - Circular Economy:

Linkages between material intensity and AI

→ AI for more sustainable & efficient industrial production

1. Optimization of material use through AI-enhanced decision-making

- Identification of exact raw material needs
- Best operating parameters to cut down energy use, optimization of logistical routes
- Detecting hidden product defects early, save on excessive processing

2. Connection of AI and material sciences

- AI-based tools for discovering and designing innovative new materials
- Advances in scientific theory, modeling, simulation, high performance computing, algorithms, software, data analysis, and experimental techniques
- Digital transformation in materials science requires application of algorithms of AI
- Researchers produced computational tools for design of new materials useful for a range of applications; from energy, electronics to aeronautics & civil engineering
- → Crucial for development of environmentally sustainable technologies & products

Example: Steel Making Industry

Implementation of AI enables reduction of production costs, improve in product quality

- 5% of ferroallov costs reduction
- Over \$4m in yearly savings
- More certainty in steel making industry through AI
- More efficient production
- Less raw material use

Example: Mining Sector – Ore Beneficiation

Cyanide is used to enrich ores such as gold or copper, if they are not rich enough during the beneficiation process

Cyanide is very poisonous & expensive and can account for up to 40% of the process costs

Al predictive models can save companies anything from 3-5% at the beginning, and as Al continues to obtain more data, even 10% as predictions are becoming better

- Less cyanide
- Less toxic waste

Source: Zavalishina, 2017

Example: Clean Energy Materials

- Opportunity to apply AI to clean energy value chain: materials
- Existing materials are often toxic, non-earth abundant and require carbon-intensive processing
- New materials compatible with 3D printing can;
- → Reduce embedded emission, toxicity and costs

Example: Machine Learning & AI in mining

Al within the domain of smarter planning and operations, advanced master data management, workflow management and predictive analytics

Digital mines:

- high-speed Ethernet networks and fibre optic cables enable tracking and monitoring of processes
 & avoiding mistakes
- → Tracking generates data about mine's operations → used by analytical programs & AI to pinpoint ways of process optimization

Example: Gas fractionation optimization

Al is used to improve efficiency, reduce costs and minimize downtime upstream performance

- by using AI to 'virtually' detect changes in the incoming gas stream and recommend optimal parameters for a fractionation unit, to decrease energy use by 5-7%
- increased throughput
- less energy and water consumed

Source: Zavalishina, 2017

Example: Better control energy consumption of data centres

- Global data centre electricity demand in 2018 was an estimated 198 TWh
- Almost 1% of global final demand for electricity
- → Applying artificial intelligence in data centres to reduce energy consumption

Source: IEA, 2019

The Role of AI and frontier technologies in achieving the Sustainable Development Goals

- Nature-like & convergent technologies enabling genetically modified cereals and forest cultures for increased food production and resistance to agricultural pests, allowing reduced use of pesticides.
- Al used in agriculture to forecast and analyse changes in ecosystems

- Nano-filters, catalyst technology and other equipment and materials for water purification
- AI for management of water-related hazards

- Nano-materials for new electrodes for hydrogen production & storage
- Cheap autonomous buildings with self-sufficient energy systems
- **Hybrid cars** with combined engines, saving non-renewable energy sources

The Role of AI and frontier technologies in achieving the Sustainable Development Goals

- Smart technologies, smart factories, cloud-based services, 3D-printing, industrial Internet enable growth in industry, infrastructure & innovation
- Sensors for real-time monitoring boosting industrial safety at industrial sites

Biomimicry saves materials & energy in industry and urban infrastructure planning, design and management

- IoT and cloud computing for more customized products
- **IoT** for a safe disposal of products
- Al for more efficient use of materials

The Role of AI and frontier technologies in achieving the Sustainable Development Goals

- Nature-like & Convergent technologies promising for circular economy goals, effective use of materials, elimination of waste and use of toxic materials
- Drones equipped with AI can combat deforestation and poaching

- AI for environmental management and disaster risk reduction
- Competition for natural resources → critical issue in economics & politics
- Big data, cloud computing and AI for better understanding and predicting climate change and geohazards

- Collective actions are needed to embrace the benefits AI and emerging technologies can offer
- Interdisciplinary approach is needed; combination of nano-technological approaches with achievements in molecular biology, bioengineering, genetic engineering

UNIDO Publications

in

Al for more effective Environmental Management

• Combination of AI, Geographical Information Systems, Modelling and Simulation, User Interfaces etc. for a better integration of data, information and knowledge from various sources in the environmental sector

• Examples:

- → Natural environmental modelling; such as contamination of soil, groundwater, atmosphere
- → Industrial Safety: dealing with the increasing complexity of industrial accidents due to human—machine interactions is difficult to monitor without installation of cyber-technologies such as sensors and AI
- → Cloud-based AI decision support systems for water quality monitoring
- → Circular Economy: digitized product development for enhanced 'design for circularity'
- Al techniques applied in three broad categories
 - 1. Data interpretation & mining techniques → identification of potential problems and opportunities
 - Problem Diagnosis techniques → recognition of characteristic symptoms do develop and confirm hypotheses about possible causes, expert systems play an important role
 - Decision Support techniques → evaluation of alternatives, exploration of their possible consequences

