Accelerating climate actions with Al: can ITU experiences from SSC help?

Dr. Leonidas Anthopoulos, Professor, University of Thessaly, Greece Co-rapporteur ITU SG20/Q5 Research and emerging technologies Head of ELOT/TET 16/OE 5 Sustainable & Smart Cities Director of the Research Institute in Intelligent Systems and Smart Cities, University of Thessaly, Greece

How can AI and emerging technologies help?

- In conjunction with the climate science:
 - Mitigation: measure/estimate/model
 - Adaptation: help society adapt to climate change
 - Alteration: reduce greenhouse gas emissions
- Climate change is a complex problem

design smart electrical grids Track deforestation in satellite images

Mitigation: Can we use ML to predict methane?

Ng, A. and Zhou, S. (2019). Tackling Climate Change Challenges with AI through Collaboration. ICML Workshop, Jan. 14, 2019

Mitigation: can we improve the view on turbines?

Mitigation: can we improve the view on turbines?

Data:

- Train model on 100K images
 ~50K USGS positives
- Run detection on 1.8M images

Baseline Model: DenseNet-121

Weakly Supervised Localization: GradCAM

Mitigation Wind Turbine Detection Dallas Real-time wind speed http://hint.fm/wind/

Ng, A. and Zhou, S. (2019). Tackling Climate Change Challenges with AI through Collaboration. ICML Workshop, Jan. 14, 2019

The energy problem

Platt, J. (2019). AI for Climate Change: the context. ICML Workshop, Jan. 14, 2019

Ideal for ML/AI + new technologies

- Energy:
 - zero carbon
 - cheaper than fossil fuel
 - easier to diffuse energy types if they are cheaper
 - If energy is cheaper: global community will be more prosperous
- ML/AI can support inventing new technologies
 - Analysis/understanding
 - Optimization
 - Control
 - debugging

Can we use ML/AI to learn this mapping?

Sensor output

No large enough dataset Use Bayesian inference

Plasma state

Climate crisis

• Reaching the planet's capacity for carbon

Climate crisis

• Reaching the planet's capacity for carbon

Temperature as a function of start date

Assuming rapid decarbonization (10% per year)

Temperature as a function of start date

• Assuming moderate decarbonization (3.3% per year)

What needs to happen?

- Decarbonize rapidly and quickly to avoid >2 °C
 - Largely deployed by 2040
 - Decarbonize by 2050
- Zero-carbon energy technologies must be there
 - No time to invent new fancy technologies
 - Renewables are available and scalable
- Post-2040 zero-carbon technologies still useful
 - Backstop to avoid absolute worst climate change
 - Scenario for plentiful energy for everyone is achievable and desirable

Moderate levels of renewables can work

High levels of renewables can get expensive

Getting the last of the carbon out will be expensive

For method, see Platt, Pritchard, Bryant (2015) http://bit.ly/DOSCOE

Assumptions	Solar capital (\$/kw)	Wind capital (\$/kw)	Battery capital (\$/kwh)	Battery lifetime (years)
Conservative	790	1370	200	10
Optimistic	520	1290	100	15

Can ML/AI help?

- Most valuable zero-carbon source:
 - Dispatchable (can turn on/off as needed)
 - Like hydropower
- Can dispatch demand as well
 - Meet demand need
 - Turn on demand when carbon intensity of supply is low
- Can ML/AI enable demand response?
 - Google reported 40% less energy spent on data center coding via ML control

Many sources contribute to climate crisis

Carbon pressure is required

- Increased efficiency lowers price of electricity and fossil fuel
 - Cheaper goods are used more
- Less energy use -> more income + economic growth
 - Jevon's paradox save 1J of energy cause > 1J of energy consumption
- Efficiency makes people better off, even with Jevon's paradox

Adaptation

Example: flood forecasting

- Floods are bad now
 - US \$9.8B annual damage
 - Affects 250M people/year
- Will get worse at higher temperature
- Use ML to better predict floods

Example: use ML to derive high resolution maps

Reverse the damage?

Methods?

- Bio-energy with carbon capture and sequestration
- Increase carbon in soil with plants
- Free air capture?
- Can ML/AI help any of these?
 - After 2040 ML/AI is more likely to enable such a contribution

Discussion

- Climate and energy is a huge problem
- Multiple time scales (ML/AI can help after 2040 but we need action now!)
- Many sources of greenhouse gases (no single silver bullet)
- No purely technological solution (we need carbon pressure)
- Mitigation:
 - ML/AI for modeling atmospheric convection
 - Deep learning to detect methane leaks
- Adaptation:
 - Estimate the economic impact
 - Track wild life
- Alteration:
 - Enhance renewables
 - Carbon pressure
 - Optimize processes with AI (e.g. food supply)

So, could smart cities help?

City as energy system: findings from Trikala

How can standards help cities?

Some indicative comparative figures

Adopting the ITU SSC definition and architecture framework

LΠ

Can the city become more efficient? How can AI help?

H

Please contact me for more information.

Thank you for your attention!

lanthopo@uth.gr

https://scholar.google.gr/citations?user=oh6zqcUAAAAJ&hl=el&oi=ao https://www.researchgate.net/profile/Leonidas_Anthopoulos, https://gr.linkedin.com/in/leonidasanthopoulos

Public Administration and Information Technology 22

Leonidas G. Anthopoulos

Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick?