
 

 

 

ETSI ECN Tutorial (Version 1.1) 

by 

John Larmouth et al 

(Version 1 was produced by John Larmouth, a member of ETSI STF 169; others 
have made later contributions to the work.) 

NOTE — This tutorial represents work in progress. A recommended expiry date is Spring 2001, when users are 
strongly recommended to discard this version and seek a later one. See http://asn1.elibel.tm.fr/ecn/tutorial.htm 
 
 



2 



  3 

CONTENTS 

1 Questions and Answers..............................................................................................................................................5 
1.1 What is Encoding Control Notation (ECN)? ..................................................................................................5 
1.2 Can ECN be used alone? ................................................................................................................................5 
1.3 What are its applications?...............................................................................................................................5 
1.3.1 Specialized encodings of simple fields...........................................................................................................5 
1.3.2 Specialized encodings of constructors............................................................................................................5 
1.3.3 Specialized mechanisms for extensibility.......................................................................................................6 
1.3.4 Re-definition of legacy protocols ...................................................................................................................6 
1.4 Is ECN powerful enough for all these purposes? ...........................................................................................7 
1.5 Is ECN simple and clear enough for use and implementation? ......................................................................7 

2 History and current status of the ECN work ..............................................................................................................7 
3 Fundamental concepts................................................................................................................................................8 

3.1 Structure of an ASN.1+ECN specification .....................................................................................................9 
3.1.1 Structure concepts ..........................................................................................................................................9 
3.1.2 Structure examples .........................................................................................................................................9 
3.2 Names of encoding structures.......................................................................................................................10 
3.3 Application fields and auxiliary fields..........................................................................................................10 
3.4 Encoding Classes, Encoding Objects, and Encoding Object Sets ................................................................10 
3.5 Encoding Structures......................................................................................................................................12 
3.5.1 Introduction to the concept ...........................................................................................................................12 
3.5.2 Examples of encoding structure definitions..................................................................................................12 
3.6 Classes of classes! ........................................................................................................................................15 
3.7 Implicitly generated encoding structures......................................................................................................16 
3.8 Applying encodings......................................................................................................................................18 
3.9 Explicitly generated encoding structures......................................................................................................19 
3.9.1 Introduction ..................................................................................................................................................19 
3.9.2 Defining an explicitly generated encoding structure ....................................................................................19 
3.10 Defining encoding rules, parameterization, and replacement.......................................................................21 
3.11 Differential encode/decode actions...............................................................................................................22 
3.12 Other fundamental concepts .........................................................................................................................23 

4 The process of defining a legacy protocol ...............................................................................................................23 
4.1 Writing the ASN.1........................................................................................................................................23 
4.2 "Coloring" the ASN.1...................................................................................................................................24 
4.3 Defining the necessary encoding objects and object sets .............................................................................25 
4.4 Applying the encodings................................................................................................................................25 

5 How to define encoding objects...............................................................................................................................25 
5.1 Model for defining simple bit-field encoding objects...................................................................................25 
5.2 Mechanisms for defining encoding objects ..................................................................................................28 
5.2.1 Use of an already-defined encoding object name .........................................................................................28 
5.2.2 Use of "defined syntax"................................................................................................................................29 
5.2.3 Use of an existing encoding object set .........................................................................................................29 
5.2.4 Use of value mappings .................................................................................................................................29 
5.2.5 Encoding a structure component-by-component ..........................................................................................30 
5.2.6 Differential encode/decode object definition................................................................................................30 
5.2.7 User-defined encoding-functions..................................................................................................................31 
5.3 Value mapping mechanisms.........................................................................................................................31 



4 

5.3.1 Mapping single values ..................................................................................................................................31 
5.3.2 Mapping by matching fields .........................................................................................................................31 
5.3.3 Mapping using #TRANSFORM encoding objects .......................................................................................32 
5.3.4 Mapping by abstract value ordering .............................................................................................................32 
5.3.5 Mapping by distributing values ....................................................................................................................32 
5.3.6 Mapping integer values into bits...................................................................................................................33 

6 How to define encoding object sets .........................................................................................................................33 
7 How to apply encodings in the ELM .......................................................................................................................34 
8 Examples of simple encoding object definition.......................................................................................................34 
9 Encoding objects for commonly used encoding techniques ....................................................................................35 
10 Further reading and guide to the ECN Specification ...............................................................................................35 

 



  5 

 

1 Questions and Answers 

1.1 What is Encoding Control Notation (ECN)? 

ECN is a formally-defined notation (supported by tools) 
which, when applied to an ASN.1 abstract syntax 
specification, determines completely the way values of 
that abstract syntax are to be encoded/decoded. 

1.2 Can ECN be used alone? 

No. ECN is always used to specify the encoding of one or 
more ASN.1 types. We normally refer to an 
"ASN.1+ECN" specification. 

1.3 What are its applications? 

1.3.1 Specialized encodings of simple fields 

ECN specifications can be used to provide "specialized 
encodings" for some parts of an ASN.1 specification. 

For example, ECN can be used to specify that identified 
INTEGER fields in an ASN.1 specification are to be 
encoded using Huffman encoding techniques. 

A Huffman encoding uses the theoretical-minimum number of bits (averaged over many transmissions) to 
transfer integer values, given the probabilities associated with the occurrence of each possible value of the 
INTEGER field. 

The same mechanism can be used to define optimum "identifier" values for messages, given the frequency of 
their occurrence, and optimum encoding of "choice determinants" to identify the selection of alternatives in an 
ASN.1 choice construct. 

1.3.2 Specialized encodings of constructors 

Frequently a designer will wish to use alternative 
mechanisms to those of standard encoding rules for some 
constructs. 

For example, a "SEQUENCE OF A" can be supported by 
using a "More-bit" set to 1 before each instance of "A", with a terminating "More-bit" set to zero at the end of 
the sequence-of. (In the case of zero iterations, there will be a single zero bit.) 

ECN can be used to specify the use of this mechanism for some of the sequence-of constructions in a 
specification, whilst retaining the standard encoding (a count of iterations) for other instances of sequence-of. 

Another feature of ASN.1 that is described as a "constructor" (as opposed to a bit-field in the encoding) is an 
occurrence of OPTIONAL or DEFAULT. A "Presence-bit" set to one if the optional element is present, to zero 
otherwise, is a common form of encoding, but PER groups all such present bits at the head of a sequence. ECN 
can be used to place all presence bits immediately before the element whose presence or absence they determine. 

It should be noted that there are some forms of "optionality" that are not easily and cleanly supported in ASN.1 
without application rules. One of these is the presence of a sequence of optional elements where it is a 
requirement that an optional element can be present only if all the preceding optional elements of the sequence 
are present. Typically, in this case, there is no "Presence-bit", rather the last optional element is determined by a 
receiver when the end of a PDU, or of a length-delimited sequence, is encountered. This mechanism is 
sometimes called use of "tail-end optionals". 

Who cares about encodings, provided they 
work?  Well, some people want to take control! 

ASN.1+ECN is the phrase to use. 

PER is mostly OK, but a few critical fields need 
to be done differently? OK. Use ECN. 

I don't want a length count - I want to 
terminate my character strings with a null 
octet! 



6 

Whilst these application rules cannot be formally expressed in ASN.1, ECN can be used to generate the required 
encodings. 

1.3.3 Specialized mechanisms for extensibility 

"Extensibility" is an ASN.1 term, which refers to the totality 
of specifications on the behavior of Version 1 systems that 
enables Version 2+ systems to interwork with them in a 
simple manner, without the need for Version 2+ systems to 
use dual-stack approaches. (A dual-stack approach is one where a significant part of the code for earlier versions 
has to be included in parallel with the code for later versions, rather than being able to use – part of – the code of 
the later version to interact with later versions.) 

Extensibility generally involves the specification of places in an encoding where Version 2+ material will be 
added, with mechanisms for Version 1 systems to detect the end of such encodings, and to ignore them. Such 
encodings may occur at the end of PDUs or other length-delimited constructs, or may appear at identified places 
within an encoding. 

Extensibility is signaled in an ASN.1 specification by the use of the extension marker (and version brackets). 
The effect such notation has on encodings, and the decoding rules for Version 1+ systems, can be specified using 
ECN. 

The "tail-end optionals" mechanism described above can be extended very simply to provide support for 
extensibility, and its use for this purpose can be specified using ECN. 

1.3.4 Re-definition of legacy protocols 

Defining specialized encodings for some ASN.1 fields or 
constructors (or for extension mechanisms) may occur in 
newly-defined ASN.1 protocols where the encoding is 
required to be even more efficient than a standard PER encoding. However, the most common use for such 
specialized encodings is to support a "legacy protocol". 

In this scenario, we have a long-established protocol defined by some form of ad hoc notation - for example 
pictures of bits and bytes, or some form of tabular notation. 

Encode/decode routines for such protocols cannot be provided by application-independent tools.  Such protocols 
frequently (have to) complicate the specification for implementors of the application by making explicit and ad 
hoc reference to (and specification of) "Presence-bits", "More-bits", length fields, and fields which determine 
which of a number of possible alternatives has been encoded (choice determinants). 

There have in the past been many attempts to express such protocols using ASN.1, but this has served only the 
purpose of clarifying the structure (abstract syntax) of the application data. Standard ASN.1 tools applied to such 
structures would in general not generate the same bits-on-the-line as the original specification. 

Attempts to write the ASN.1 in such a way that the bits on the line were the same was sometimes just about 
possible, but only by including in the ASN.1 as explicit components of the abstract syntax the "auxiliary fields" 
used to support the encoding - the presence bits, length fields, etc. 

With ECN, it is possible to write "clean" ASN.1, containing only components that carry application semantics, 
and to generate from that an encoding structure that contains all the auxiliary fields. ECN further permits the 
definition of encodings for that generated structure which will produce exactly the bits-on-the-line that are 
required by the original specification. 

It may be that few authoritative, standardized, definitions of legacy protocols will be re-defined using 
ASN.1+ECN. However, the re-definition of the protocol in this way by implementors may become quite 
common, in order to gain access to ASN.1+ECN tools to perform the encode/decode functions of the 
application. 

A later version will mention the advantages provided for testing purpose (a link with TTCN) and advantages for 
formalization of the protocol behavior in SDL (a link between SDL, TTCN, ASN.1 and ECN could be provided 
within SG10). 

Everybody has their own approach to 
extending protocols. 

How ECN can take over the world! 



  7 

1.4 Is ECN powerful enough for all these purposes? 

Specification of ECN has been a learning process. The 
requirements of several groups for specialized 
encodings, but particularly the sorts of encodings used in 
legacy protocols, have been carefully studied. 

It seems likely that the ECN framework has sufficient functions and flexibility to satisfy all the needs related to 
applications of ECN identified above. 

In detail, however, additions to ECN functionality may occur of the next few years as further 
encoding mechanisms are uncovered and support for them is added. 

Potential ECN users are encouraged to ask for additional functions if the present specification fails to meet their 
needs. 

1.5 Is ECN simple and clear enough for use and implementation? 

Once the fundamental principles of ECN are understood, 
it is not too difficult to learn to write it, but a good 
knowledge of ASN.1 makes the task a lot easier. 

The notation is (designedly) quite similar to the ASN.1 notation, and many ASN.1 concepts carry across. Thus 
parameterization is available in ECN definitions in exactly the same way as in ASN.1. The relationship of values 
to types, information objects to information object classes, carries across to the relationship of ECN encoding 
objects to encoding classes. The notational structures used for defining ECN encoding objects of some encoding 
class and for defining encoding object sets will be familiar to those familiar with ASN.1 notation for defining 
values and information object sets or value sets. The notation used to define an ECN encoding structure is very 
similar to the definition of ASN.1 types (with curly brackets and commas used in a similar way). However, the 
“#” character is used at the start of names and provides immediate recognition that what is being defined is an 
encoding structure and not an ASN.1 type. 

Tools are available to syntax check ECN specifications. Tools which will enable implementation of a protocol to 
be produced as easily from an ASN.1+ECN specification as from an ASN.1 specification that uses standardized 
encoding/decoding rules have been announced. (Contrast ASN.1, where even syntax checkers did not become 
available until several years after the first Standard/Recommendation was produced.) 

As with any notation (including ASN.1!) it is possible to write obscure and complex ASN.1+ECN, but provided 
the appropriate mechanisms are used, ECN specifications can be very straight-forward and obvious once the 
basic concepts have been grasped and the syntactic framework understood. 

2 History and current status of the ECN work 
This text was written December 2000, and reflects not only the 
document under ballot, but also ballot comments that, if 
accepted, will add additional functionality. It is expected that 
the output of the January 2001 Editing Meeting will contain 
all the features described in this tutorial, but readers are 
cautioned that there could still be changes in detail, and even further additions of functionality. 

Version 2 of this Tutorial is expected to be issued shortly after the January Editing Meeting, and is likely to be 
more "stable" than this version 1. As stated at the head of the document, an expiry date for this text of Spring 
2001 is probably about right. 

The idea of defining appropriate encoding rules to enable ASN.1 to be applied to legacy protocols (with the same 
bits on the line) originated with several workers during the 1980s. 

The approach was to define Minimum Bit Encoding Rules (MBER) which would encode integer values into the 
minimum bits required by its constraints. If an ASN.1 type was defined with a component for every field of the 
encoding (suitably constrained), and MBER was then applied, the legacy encoding would be obtained. 

Well, it seems to do most things, and it can 
always be added to! 

Simplicity is in the eye of the beholder! 

You either find a historical perspective 
illuminating or totally boring – skip this 
clause if you wish! 



8 

This approach never worked except in very trivial cases. One reason was that auxiliary fields are frequently 
present in an encoding (length determinants, presence bits, etc). It was possible to generate encodings for these 
by including components in the ASN.1 specification for them, but there was no way to express the fact that these 
fields controlled the length or presence of other fields. Purists also regarded it (and still regard it) as 
unsatisfactory to include such auxiliary fields (concerned solely with encoding mechanisms) in the abstract 
syntax definition. 

However, when the ASN.1 Packed Encoding Rules were developed, many of the MBER concepts were 
incorporated. As a result, to this day, unaligned PER is generally used as the base encoding (modified where 
necessary by use of ECN) when legacy protocols are to be defined by ASN.1+ECN. 

The idea of an Encoding Control Notation separate from, but applied to, an ASN.1 specification was first 
conceived by Frank Schramm of Siemens and by Colin Wilcock of Nokia. Their early work also recognized that 
there were two types of fields in an encoding: 

– Fields carrying application semantics; and 
– Auxiliary fields used only to support the encoding. 

Like early workers, however, their proposals were based on including auxiliary fields in the ASN.1 specification 
(the so-called "one-to-one" model), but they did start to address the problem of identifying some fields as a 
presence or length determinant for other fields. Today, the determinant concept remains a primary part of ECN, 
but it is now considered a bad design to have ASN.1 components corresponding to auxiliary fields - such fields 
can and should be inserted as necessary into encoding structures generated from the ASN.1 type definitions. 
ECN provides several mechanisms for doing this. 

These two workers first proposed that a Recommendation/Standard be developed for Encoding Control (EC) - 
later to become Encoding Control Notation (ECN) - in January 1999. It was, however, about twelve months later 
before the ideas of ECN began to be established, and it was not until a major ETSI input - a complete new text 
for the Recommendation/Standard - was produced in the summer of 2000 that ECN in its present form began to 
mature. 

The early work still relied on putting auxiliary fields into the ASN.1 specification - something that purists 
strongly objected to. It was not until much later in the work that the concept emerged of supplementing the 
ASN.1 specification with an encoding structure definition that would unashamedly contain a field for every 
field in the encoding. Strong links were, of course needed between the notation used to define encoding 
structures and ASN.1 itself.  

Today encoding structures are typically produced by automatic generation from an ASN.1 type definition, with 
ECN notation selectively changing parts of the structure, replacing parts, adding fields, and so on, before the 
application of actual encodings to the structure. 

A crucial development in the ECN work (in late 1999) was the introduction of the concepts of encoding objects 
and encoding classes, mentioned earlier. Another key mechanism was the introduction (in Autumn 2000) of 
"coloring" a structure generated from an ASN.1 type to identify which constructors in it require specialized 
encodings. Throughout the work, means of easily specifying replacements of parts of a structure with more 
complex structures was a continuing development. One important mechanism was to allow an encoding object 
for a constructor to perform replacement of the entire construct or of components before applying encodings. 
These concepts are described later in this tutorial. 

Following the ETSI input in the Summer of 2000, the ECN work matured rapidly, and began a six month Final 
Committee Draft (FCD) ISO/IEC ballot. The FCD ballot closes late January 2001, and the expected final 
approval of the first ECN Standard/Recommendation is expected around Summer 2001. 

3 Fundamental concepts 
This section contains some examples to illustrate the description and to familiarize the reader with the ECN 
syntax. Additional small examples can be found in an Annex of the ECN Standard itself. Finally, a number of 
"ETSI ECN Case Studies" of the application of ECN to legacy protocols are in preparation, and will form a 
further source of large and real-world examples. 



  9 

3.1 Structure of an ASN.1+ECN specification 

An example of the structure of ASN.1 and ECN definitions 
appears at the end of this sub-clause. 

3.1.1 Structure concepts 

Readers will be familiar with the concept that an application is defined using one or more ASN.1 modules, with 
import and export of types, values, information object classes, information objects, and information object sets 
between these modules. 

In an ASN.1+ECN specification, these ASN.1 modules are supplemented by a set of ECN modules, with export 
and import between both the ECN modules and between ECN modules and ASN.1 modules. 

There are two sorts of ECN modules: Encoding Definition Modules (EDM) and an Encoding Link Module 
(ELM). Although the expansion does not read well ("Module module"), it is common to refer to EDM modules 
and to ELM modules. 

For any given application whose messages are defined using ASN.1+ECN, there will in general be any number 
of ASN.1 and EDM modules, but precisely one ELM module. 

The term "Encoding Link Module" was coined when the sole purpose of this module was to link together the 
ASN.1 and ECN specifications, and the name has been retained. Today, its main function is to import structures 
corresponding to ASN.1 types, encodings from EDM modules, and to define the encoding of the ASN.1 types by 
applying the encodings to the corresponding structures. (Thus the name "Encoding Application Module" might 
be more appropriate, but is not used.) 

This separation of EDM functionality (defining a set of possible encodings of bit-fields and of constructors) from 
ELM functionality (applying the encodings to determine the encoding of ASN.1 types) is fundamental to an 
understanding of ECN. It is only in the ELM that one finds the authoritative definition of how any type in an 
ASN.1 module is to be encoded. 

In order to know the encoding of any top-level application message defined using ASN.1, the first requirement is 
to locate the ELM. Justifying its name, this will link to ASN.1 modules containing the type definition for the 
message, and to EDM modules containing the definition of the encodings that it applies to those types. 

3.1.2 Structure examples 

An ASN.1+ECN specification consists of one or more ASN.1 modules (totally standard ASN.1, no additions, no 
restrictions): 

 
        ASN1-module-my-name 
        {joint-iso-itu-t(2) To be supplied} 
        DEFINITIONS ::= 
        BEGIN 
        EXPORTS ......; 
        IMPORTS ......; 
        ..... 
        END 

together with one or more EDM modules: 
 
        EDM-module-my-name 
        {joint-iso-itu-t(2) To be supplied} 
        ENCODING-DEFINITIONS ::= 
        BEGIN 
        EXPORTS ......; 
        GENERATES-AND-EXPORTS ......; 
        IMPORTS ......; 
        ...... 
        END 

The "GENERATES-AND-EXPORTS" clause references an ASN.1 module for a structure corresponding to an 
ASN.1 type definition, and generates (and exports) a new structure with some replacements and additions. This 
is discussed more fully under "coloring" below. 

Recognize the top-level constructs, and you 
will begin to feel comfortable! 



10 

The specification is completed with a single ELM module: 
 
        ELM-module-my-name 
        {joint-iso-itu-t(2) To be supplied} 
        LINK-DEFINITIONS ::= 
        BEGIN 
        IMPORTS ......; 
        ...... 
        END 

Within the body of EDM modules, assignments used to define encoding objects, encoding object classes, and 
encoding object sets take the familiar ASN.1 form using "::=". In the ELM the statements are applying 
encodings, and use a slightly different syntax discussed later. 

3.2 Names of encoding structures 

As for ASN.1 types, different modules may define 
encoding classes with the same name. If types with the 
same name are exported from different ASN.1 modules 
and then imported into a single ASN.1 module, there is potential for confusion. ASN.1 resolves this by the use of 
an external reference to the type. An absolute reference is what we call here a "fully-qualified name" which 
includes the name of the module that defined the type. 

In ECN, these problems become more acute, as things called "explicitly generated structures" have the same 
simple class name as things called "implicitly generated structures", but are defined in different modules. The 
use of a fully-qualified name to distinguish such structures is important in the use of ECN. 

3.3 Application fields and auxiliary fields 

This is a short sub-clause. The concepts have already been 
mentioned, and there is no associated syntax to examine. 

Consider an ASN.1 type definition, and an encoding produced by the application of standard encoding rules. 

The encoding consists of a number of identifiable fields. Some of these carry application semantics and 
correspond directly to components of the ASN.1 type definition. These are called application fields in the 
encoding. Others are inserted by the encoding rules to enable decoding to take place. 

There are many names given to these auxiliary fields by different authors, but in ECN work the term 
determinant is usually employed. So a bit that determines whether an optional element is present or not is called 
a presence determinant. A field that determines the length of an element is called a length determinant, and a 
field that determines which of two possible alternatives is present is called a choice determinant. 

For PER encodings, these fields can be clearly identified, and perform a single function, but the precise way they 
work can vary. Thus a length determinant in PER may be a count of bits, of octets, or of iterations. In PER - but 
in few other encoding schemes - the presence determinants for all the optionals in a sequence are collected 
together at the head of the sequence. In BER, there are length determinants, even in cases where they are not 
strictly needed for decoding, and the encoding of the tag performs the roles of presence determinant and of 
choice determinant. 

A later part of this tutorial discusses some of the many mechanisms that can be used for determination. ECN has 
to support the insertion of auxiliary fields in a flexible manner, and has to support the many ways in which such 
fields are used for determination. 

3.4 Encoding Classes, Encoding Objects, and Encoding Object Sets 

This is the most important fundamental concept in the 
ECN work, and ECN cannot be understood or used 
without a good grasp of the concept. The concept is 
introduced at this point in the tutorial, but in a fairly 
vague way, and with reference to ASN.1 type constructs. We will see later that it actually applies to encoding 
structure fields, and not to parts of ASN.1 type definitions, and we will later provide a more precise 

What's in a name? Scope rules? Yuck! 

Determination is what is required! 

Understand this stuff, and all else is easy! Well .... 
fairly easy! 



  11 

understanding of the idea of "synonymous" classes. The introduction to the concepts in this clause does not tell 
any lies, but may leave the intelligent reader asking some further questions. 

The basic idea is that we can produce a definition of how to encode a boolean. For the moment, let us keep it 
simple - we can either: 

– Use a single zero bit to represent TRUE and a single one bit to represent FALSE. Or 
– Use a full octet of zeros to represent TRUE and any non-zero value to represent FALSE (or vice 

versa). 

Of course, there are many other possible encodings for a boolean. Each of these definitions of how to encode a 
boolean is called an encoding object for the #BOOLEAN encoding class. (Note the "#" - all encoding class 
names start with a "#". 

Clearly any of the specifications of how to encode a boolean can be used to encode a boolean field in a protocol, 
but they would not be of much use in trying to encode an integer field, or a sequence-of constructor. 

Thus we talk about having different encoding classes #BOOLEAN, #INTEGER, #SEQUENCE-OF, #CHOICE, 
and so on. In order to specify encodings for a complete protocol, we generally need a set of encoding objects, 
one for each class that is present in the type definition. (To be more precise, one for each class that is present in 
the encoding structure that corresponds to the type definition.) 

As noted above, names of encoding classes always start with a "#" followed by an upper-case letter. This is done 
to help human readers recognize when an encoding class name is being used. It is not strictly needed for 
computers. 

Some encoding classes are regarded as synonyms for other encoding classes, because the functionality needed to 
define encoding objects for those classes are so similar, and the same syntax is used for their definition. Thus the 
#ENUMERATED class and the #INTEGER class are defined as synonyms. Similarly, the #SEQUENCE-OF and 
#SET-OF classes are also defined to be synonyms. 

The main importance of synonyms is simply that the same syntax is used for defining encoding objects of 
synonymous classes. However, we will see later that the ability to define is important if some (e.g.) SEQUENCE 
OF constructions in an ASN.1 message are to have their lengths determined one way, and some a different way. 

If an encoding object is defined for a particular class, it normally encodes precisely that class, not a synonymous 
class. (See, however, the discussion on the application of encodings later in this Tutorial.) Thus we model PER 
encodings by saying that PER defines encoding objects for the #SEQUENCE class and for the #SET class (the 
former giving a textual ordering of components and the latter a tag-based encoding). When PER encodings are 
applied, the encoding object for the #SEQUENCE class "latches on" or "attaches itself" to all the encoding 
structure fields corresponding to the ASN.1 constructor SEQUENCE, whilst the encoding object for the #SET 
class "latches on" or "attaches itself" to fields corresponding to occurrences of SET. 

When performing specialized encodings it can often happen that some instances in a protocol of ASN.1 
sequence-of constructs are to be encoded in one way, whilst others are to be encoded in a different way. To 
support this, occurrences of (for example) sequence-of can be "colored" so that some map into one class and 
others map into a different (synonymous) class, enabling different encodings to be applied to the different 
occurrences. 

There is a strong analogy between the ASN.1 "value of a type" concept and the ECN "encoding object of a class" 
concept. Thus: 

 
                my-int INTEGER ::= ...... 

in an ASN.1 module defines a value ("my-int") of type INTEGER, with syntax on the right of the "::=" being 
dependent on the type of the "governor" ("INTEGER" in this case). Similarly: 

 
                my-boolean-encoding #BOOLEAN ::= ...... 

in an EDM module defines an encoding object ("my-boolean-encoding") of encoding class #BOOLEAN, with 
syntax on the right of the "::=" being dependent on the class of the "governor" ("#BOOLEAN" in this case). 



12 

3.5 Encoding Structures 

3.5.1 Introduction to the concept 

Encoding structure definitions describe the structure of an 
encoding. As with abstract values, simple encoding fields are 
grouped into composite units by encoding constructors. Such 
constructions can be named, and can then be used within the 
definition of more complex encoding structures. The 
concepts and syntax are similar to the ASN.1 concepts of type definition, but are here referring to fields in 
encodings, and to the rules for their combination. 

The ECN model enhances the meaning of an ASN.1 module type definition (but does not in any way change the 
syntax). When an ASN.1 type is defined, an implicitly generated encoding structure is also defined, and 
automatically exported from that ASN.1 module. 

This encoding structure contains fields (and encoding constructors) corresponding to the components and 
constructors used in the ASN.1 type definition, and its exact form is fully specified in  the ECN Standard. 

Very roughly, a text representation of that implicitly generated structure would look like the ASN.1 type 
definition, but with a # before the names. (There are a number of other differences, however, described below.)  
The name of an encoding structure corresponding to an ASN.1 type is always the ASN.1 type name preceded by 
a "#". For example,  defining the ASN.1 type "My-Type" in an ASN.1 module would implicitly generate (define 
and export) a corresponding encoding structure called "#My-Type". 

It is important to realize, however, that despite looking a bit like a type definition, an encoding structure 
definition is very different. Here we are dealing with fields in an encoding (concrete syntax) and the way that 
they are combined, not with abstract values (abstract syntax) and the way abstract values are combined. 

As well as being implicitly generated by ASN.1 type definitions, encoding structures can be produced and 
named using ECN syntax. This is an important part of ECN, as it enables parts of an implicitly generated 
encoding structure to be replaced by another (usually more complex) encoding structure. 

When such replacement occurs, there is a mapping of abstract values ("value mappings") from the original 
structure to the replacement structure. Encodings of the replacement structure (for these abstract values) now 
form the encodings of the abstract values present in that part of the original structure that has been replaced. 
"Value mappings" are discussed further later. 

Returning to the meaning of "encoding class": an encoding class is a part of an encoding structure definition, and 
represents the set of all possible encoding specifications (encoding objects) related to that part of the encoding 
structure. Encoding classes may be concerned with the production of actual bits in the encoding, or with 
procedures which determine how fields are concatenated, alternatives identified, repetitions delimited, and so on. 

3.5.2 Examples of encoding structure definitions 

The time has come to present encoding structure definitions that use most 
of the available syntax. This syntax is presented in stages, with the 
definition of "#Structure1", "#Structure2", etc. The following text 
comments on these structure definitions. Structure definitions appear 
within (and are imported and exported between) EDM modules. 

 
        #Structure1 ::=  #CONCATENATION { 
                field1  #INT, 
                -- Comment can be embedded, as in ASN.1 
                field2  #BOOL, 
                field3  #NUL, 
                field4  #PAD, 
                field5  #ALTERNATIVES { 
                         alt1  #CHARS, 
                         alt2  #BITS }, 
                field6  #REPETITION { 
                        #OCTETS }, 
                field7  #Structure2 } 

As ASN.1 is to abstract values, so ECN is to 
fields of encodings: combine them, choose 
between them, miss them out, repeat them, it is 
all just the same construction mechanisms. 

Lot's of simple concrete examples 
- all of them littered with trash 
(sorry, HASH!) 



  13 

This definition uses the main primitive classes that would normally be used in an explicit definition of an 
encoding structure. 

Here only primitive fields are used (except for "#Structure2"), but we can alternatively define reference names 
for some parts of the definition and then use those reference names, just as in ASN.1. This is illustrated by the 
use of "#Structure2" (defined below). 

We see here three constructor classes:  #CONCATENATION, producing a field that is a concatenation of other 
fields (we will see later that some of these fields can be marked optional);  #ALTERNATIVES, producing a field 
that is one of several alternative fields; and #REPETITION, producing a field that is a series of repetitions of a 
given field. (These play a similar role in encoding structure definition as do SEQUENCE (or SET) and CHOICE 
and SEQUENCE OF (or SET OF) in type definition). 

Note that the syntax for #REPETITION is a pair of curly braces enclosing the component, a change from similar 
ASN.1 syntax, and designed to make the ECN syntax easier for computers! 

Encoding objects of these constructor classes specify how their component fields are composed to form the more 
complex field. This includes termination mechanisms for a #REPETITION, and resolution of which alternative 
is present for an #ALTERNATIVES. 

In addition to the constructor classes, we have a number of bit-field classes used - classes whose encoding 
objects actually produce bits in the encoding. These bit-field classes can have associated with them abstract 
values, and encoding objects for these classes are required to produce distinct encodings for each of the abstract 
values assigned to the class. 

The following table gives the type of abstract value that can be associated with each class. The name of the class 
differs slightly from the name of the ASN.1 type that is associated with such values, in order to emphasize that 
here we are concerned with the set of all possible encodings for those abstract values, not simply with a set of 
abstract values. The table is: 

 
        #INT     Integer values 
        #BOOL    Boolean values 
        #NUL     The null abstract value 
        #PAD     No abstract values can be associated with this class. 
                 It never carries application semantics. 
        #CHARS   Character string values 
        #BITS    Bit string values 
        #OCTETS  Octet string values 

The association of abstract values (part of some ASN.1 type) with one of these fields is done either implicitly 
when a structure is generated from an ASN.1 type, or by the use of value mapping. 

We define "Structure2" as: 
 
        #Structure2 ::= #CONCATENATION { 
                field1  #OBJECT-IDENTIFIER, 
                field2  #RELATIVE-OID, 
                field3  #OPEN-TYPE, 
                field5  #REAL, 
                field6  #Structure3 } 

This structure contains primitive classes that can carry object identifier, relative object identifier, open type, and 
real values. These classes are currently "second-class citizens". There are no mechanisms for directly defining 
encodings for these classes (other than use of a "user-defined function" - see later). 

The problem is partly that the abstract values associated with these classes are fairly complex abstract values, 
and the functionality needed to determine encodings for such values in a general way has not yet been 
determined. 

We define "#Structure3" as: 
 
        #Structure3 ::= #TAG #CONCATENATION { 
                field1  #BOOL, 
                field2  #INT #OPTIONAL, 
                field3  #TAG #Structure4, 
                field4  #INT (0..7), 
                field5  #OCTETS (SIZE (6)) } 



14 

Encoding objects of the #TAG class determine the encoding of the numerical value (the tag class is ignored) of 
the outermost tag of the abstract values associated with the following class. (#TAG classes are normally only 
included in implicitly generated encoding structures, but can also be included in explicitly-defined structures.) 

The presence of an #OPTIONAL class is permitted only within a #CONCATENATION (or within a synonym of 
that class - see later), and identifies that the corresponding bit-field class encoding may be absent. Encoding 
objects of this class specify how the total encoding is produced in order to enable a decoder to determine whether 
the element is present or not. This often - but not always - implies the use of a #BOOL field (perhaps "field1") 
within the sequence, acting as a presence determinant. Explicit presence determinants are only one of several 
ways of resolving the presence of an optional element. 

The "(0..7)" and "(6)" notations are similar to bounds notations in ASN.1. The first indicates that only abstract 
values in the range zero to seven can be encoded by the field (and hence restricts the abstract values that can be 
mapped to that field). The latter indicates that the field is exactly six octets long. 

We define "#Structure4" as: 
 
        #Structure4 ::= #CONCATENATION { 
                field1 #INT, 
                #EXTENSIONS { 
                        #VERSION-BRACKET { 
                            field1   #INT, 
                            field2   #BOOL } , 
                        #VERSION-BRACKET { 
                            field1   #CHARS, 
                            field2   #OCTETS } } , 
                field2 #BOOL, 
                field3 #Structure5 } 

Support for extensibility may be delayed for an amendment to the first ECN Standard/Recommendation, as work 
in this area is not fully mature, but the above illustrates the likely form that such support will take in an encoding 
structure definition. 

ASN.1 notation only supports a single insertion point in a SEQUENCE (or SET). Multiple insertion points can, 
however, be specified by using SEQUENCE constructions in tandem, and it is likely that ECN will 
(unnecessarily) restrict use of #EXTENSIONS to a single occurrence within any #CONCATENATION. 

Encoding objects of the encoding class "#VERSION-BRACKET" determine any wrapper to be placed about the 
components (which in ASN.1 may not contain nested extensions - it is not yet determined whether ECN will 
impose the same restriction). There are many actions that encoding objects of the #VERSION-BRACKET class 
(and of the #EXTENSIONS class) may specify, but the available actions are broadly similar to those for 
#SEQUENCE, but with an in-built differential encode/decode action (see later). 

Similarly, encoding objects of the encoding class #EXTENSIONS defines wrappers and differential 
encode/decode for its "components" - the #VERSION-BRACKET fields. 

We define "#Structure5" as: 
 
        #Structure5 ::=  #SEQUENCE { 
                field1  #INTEGER, 
                -- Looks rather like #Structure1, yes? 
                field2  #BOOLEAN, 
                field3  #NULL, 
                field5  #CHOICE { 
                         alt1  #UTF8String, 
                         alt2  #BIT-STRING }, 
                field6  #SEQUENCE-OF { 
                        #OCTET-STRING } } 

This looks much more like ASN.1!  In fact, it is using built-in synonyms defined as: 
 
                #SEQUENCE         ::= #CONCATENATION 
                #INTEGER          ::= #INT 
                #BOOLEAN          ::= #BOOL 
                #NULL             ::= #NUL 
                #CHOICE           ::= #ALTERNATIVES 
                #UTF8String       ::= #CHARS 



  15 

                #BIT-STRING       ::= #BITS 
                #SEQUENCE-OF     ::= #REPETITION 
                #OCTET-STRING    ::= #OCTETS 

There are built-in synonyms for names corresponding closely to the ASN.1 built-in types. Why are synonyms 
important?  And what about assignments like: 

 
                #SEQUENCE-OF     ::= #REPETITION 
or             #My-sequence-of   ::= #SEQUENCE-OF 

We are used in ASN.1 to define synonyms for types such as INTEGER, BOOLEAN, etc (typically the synonyms 
signal different semantics). 

This is also possible in ECN for bit-field classes, but ECN extends this to constructor classes such as 
#REPETITION. Why? 

We will see later that in applying encodings to a structure, we use a set of encoding objects, with no more than 
one object for any given class in the set. 

If we are looking for an encoding for a "#My-sequence-of" constructor, and there is one in the encoding object 
set being applied to the structure, then that encoding object determines the encoding for that field of the encoding 
structure. 

If there is no encoding object of the class "#My-sequence-of", then the reference is resolved, and we try to find 
one of the #SEQUENCE-OF class. If there isn't one of those, then we resolve the reference again and try for an 
encoding object for #REPETITION. 

Why does this matter?  ECN is very much about providing specialized encodings for some (but not all) 
concatenations, repetitions, and alternatives in a structure derived from an ASN.1 type. It is important, therefore, 
to be able to identify which concatenations are encoded in a specialized way, and which in a standardized way. 
(There may, of course be several "specialized ways" used in different parts of the ASN.1 definition.) 

The synonym mechanism, and the rules for applying encodings (see below) cover this requirement. 

3.6 Categories of classes 

If I define "#My-class" as a synonym for #OPTIONAL, can I 
use it in a structure definition where (for example) a 
#CONCATENATION might be expected?  Of course not! 

ECN identifies six different categories of classes. If a new class name is given to an existing class, the category 
of the old class becomes the category of the new class, and it can only be used in structure definition where that 
category of class is allowed.  

The following categories of class are defined: 
 
Bit-field classes        Things derived from #INT, #BOOL, etc 
 
Concatenation classes    Things derived from #CONCATENATION 
                          (for example, #SEQUENCE, #SET, #My-sequence) 
 
Optional classes         Things derived from #OPTIONAL 
                          (for example, #Trailing-optionals) 
 
Identification classes   Things derived from #TAG 
                          (for example, #Tag-in-6-bits) 
 
Repetition classes       Things derived from #REPETITION 
                          (for example, #SEQUENCE-OF, #SET-OF, 
                           #More-bit-sequence-of) 
 
Alternatives classes     Things derived from #ALTERNATIVES 
                          (for example, #CHOICE, #ID-selected-choice) 

An encoding structure can contain any of these classes (primitive, built-in, or user-defined), provided the 
category of the class is the right one for its use at that position in an encoding structure definition. 

Categories of categories of categories - we 
love to categorize. 



16 

As an aside:  Allowing user-defined synonyms for constructors like #CONCATENATION produced ambiguity 
in the structure definition syntax when parameterization (discussed later) was used. It was for this reason that 
parameter lists in ECN begin with "{<" and end with ">}", rather than the simple "{" and "}" that ASN.1 uses. 

3.7 Implicitly generated encoding structures 

All the above syntax can be used in two different circumstances: 
– The explicit definition of encoding structures used 

in the definition of the encoding of a complete 
ASN.1 type (by replacement and value mapping - 
see later). 

– The definition of (replacement) structures for components of a structure (perhaps including the 
insertion of "head-end" structures). This is needed to support the specification of encodings for 
constructors such as #CONCATENATION and its synonyms. 

The use of encoding structures does, however, go far beyond the explicit definition of encoding structures by an 
ECN definer. 

As has been indicated earlier, all ASN.1 type definitions implicitly define (and export from their module) a 
corresponding encoding structure. 

This implicitly generated encoding structure has fields, which have associated with them abstract values of 
components of the ASN.1 type. The end result is that encodings of the abstract values of the complete ASN.1 
type can be defined by encodings of the implicitly generated structure. 

It is this structure (of encoding classes) that is encoded (by a set of encoding objects) to determine the encoding 
of values of the ASN.1 type. 

The ECN specification completely defines (algorithmically) the implicitly generated encoding structure for 
any type that can be defined using ASN.1. The implicitly generated structure uses built-in encoding class 
synonyms, so that the names of classes are similar to the ASN.1 built-in type and constructor names. This also 
ensures that information is not lost on the distinction between "ENUMERATED" and "INTEGER", or between 
"SEQUENCE" and "SET", etc. These ASN.1 notations represent the same primitive classes, but the encodings 
applied to them are typically different (and are certainly different in the standardized ASN.1 encoding rules). 

The mapping between ASN.1 type definitions and encoding structures is "obvious", given the names of the 
synonyms for the classes. The reader of Version 1 of this Tutorial is referred (sorry!) to the ECN Standard for 
details of the correspondence, but a few points can usefully be made. 

In general, "frills and fancies" in the ASN.1 definitions are resolved and eliminated before the corresponding 
encoding structure is generated. 

For example: 
– All value references are completely resolved. 
– All non-PER-visible constraints are discarded - yes, ECN links to PER for the definition of 

constraints that can be used in determining encodings. If a constraint does not affect PER 
encodings, then it cannot be used to change the encodings defined by ECN. It is highly unlikely 
that this will give rise to limitations in the practical use of ECN. 

– All integer and length constraints are resolved to a simple pair of bounds (which might use "MIN" 
and "MAX", but are otherwise self-contained), and alphabet constraints are resolved to the 
effective alphabet constraint. 

NOTE — These constraints can be referenced in the definition of encoding objects, so a #INT with all-
positive values can be encoded differently from one with both positive and negative values, and a 
#CHARS can encode differently if it has different effective alphabet constraints. 

– Named bits in BIT STRING specifications, and distinguished values in INTEGER specifications 
are not visible to ECN. 

– Names of enumerations are lost, and any automatic allocation of values to enumerations are 
applied - the ENUMERATED type maps into the #ENUMERATED synonym of #INT, with 
appropriate bounds. 

– All parameterization is fully resolved, with parameterised types and values ignored and 
instantiations of those replaced by the corresponding parameterised type with the actual 
parameters inserted. 

Don't worry - writing structures is all done 
for you!  Just get your ASN.1 right! 



  17 

– All occurrences of "COMPONENTS OF" and of "SelectionType" are expanded. 
– Both OPTIONAL and DEFAULT ... map into #OPTIONAL. 
– Various syntactic constructs related to information object definition are resolved to their 

underlying ASN.1 types. 
– etc etc. 

There are special rules concerned with the presence of a contents specification (introduced by “CONTAINING” 
and “ENCODED BY”) on an OCTET STRING or BIT STRING. These go beyond the scope of this Tutorial. 

The user of ECN can sometimes ignore concerns with the details of the implicitly generated encoding structure, 
but for detailed control of encodings, a familiarity with this structure is important, and the reader is referred to 
the ECN Standard. 

There are three rather important points to make/re-iterate to conclude this sub-clause. 

First, there is an implicitly generated (and automatically exported) encoding structure for each ASN.1 type 
definition, with a name that is the same as the ASN.1 type definition, preceded by a "#", and which has 
associated with it all the abstract values of the ASN.1 type. ASN.1 type names such as "INT", which are allowed 
in ASN.1, but where the corresponding class name (e.g. "#INT") is a reserved name in ECN, cause some 
difficulty, but these cases are covered by the ECN Standard. Essentially, if such classes are referenced in an ECN 
specification, then the class name has to be qualified by the name of the module in which it is implicitly 
generated, using the "external reference" form of class name (similar to "external references" for type names in 
ASN.1). 

Second, the implicitly generated structure may be transformed by ECN specifications into other structures, 
usually by replacement of some of the classes within it by other classes (which are either synonyms for 
constructors, or are more complex bit-field structures). Such transformations include defined mappings of the 
abstract values from (parts of) the structure being replaced to (parts of) the replacement structure. 

Third, the actual encoding of an ASN.1 type is totally determined by the application of encodings to the 
implicitly generated structure, or to a structure which is derived from it (and to which its abstract values have 
been mapped). 

Here are some simple ASN.1 type definitions: 
 
        Color ::= [1] INTEGER {red(10), orange(20), yellow(30), 
                       green(40), blue(50), indigo(60), violet(70)} 
 
        Version ::= [2] BIT STRING {version1(0), version2(2)} 
 
        My-type ::= SEQUENCE { 
           field1       Version, 
           field2       Color, 
           field3       CHOICE { 
                alt1    [3] INTEGER (0..15), 
                alt2    [4] INTEGER (16..MAX) }, 
           field4       SEQUENCE OF 
                           OCTET STRING (SIZE (0..10)) DEFAULT ''B} 

Here are the implicitly generated structures: 
 
        #Color ::= #TAG #INTEGER 
 
        #Version ::= #TAG #BIT-STRING 
 
        #My-type ::= #SEQUENCE { 
            field1      #Version, 
            field2      #Color, 
            field3      #CHOICE { 
                alt1            #TAG #INTEGER (0..15), 
                alt2            #TAG #INTEGER (16..MAX) }, 
            field4      #SEQUENCE-OF { 
                                #OCTET-STRING (SIZE (0..10)) #OPTIONAL } 



18 

3.8 Applying encodings 

A brief re-cap: 
– Every ASN.1 type definition has a corresponding 

encoding structure (either implicitly generated, 
or derived from the implicitly generated 
structure). 

– Specification of an encoding for an ASN.1 type consists of applying (in the ELM) a set of 
encoding objects to the corresponding encoding structure. 

– Each encoding object in the encoding object set being applied is for a distinct encoding class. (An 
encoding object set is never allowed to contain multiple encoding objects for the same encoding 
class. 

When an encoding object set is applied to an ASN.1 type (defined within or imported into a specified ASN.1 
module), it applies to all the parts of that type (with controlled resolution of all type references). However, it 
does in no way imply the encoding of that type when used as a type reference within some other containing type. 
(This tutorial ignores the case of a type that is recursively defined. This produces definitional problems, but no 
real problems of intent.) 

The process of applying an encoding object set to a structure (which corresponds to an ASN.1 type, and whose 
encoding defines the encoding of that type) proceeds as follows: 

– If there is an encoding object in the set for the class of the entire structure (for example, "#My-
Messages"), then that is applied, and it completely determines the encoding of the type "My-
Messages". (This case would be unusual). 

– Otherwise, the class name is de-referenced (which usually means in practice that the type-
reference name is de-referenced). 

De-referencing will normally produce a structure such as: 
 
                #My-Sequence-Class { 
                        field1  #Type1, 
                        field2  #Type2, 
                        ...... 
                        fieldn  #Typen } 

Where #My-Sequence-Class is a synonym for #CONCATENATION. 

At this stage, we look to see if the encoding object set contains an encoding object for "#My-Sequence-Class". If 
found, then this encoding object is applied, and the whole original encoding object set is then applied (in parallel, 
and independently) to each component of the structure. 

Doing this recursively produces the final encoding of all components (to any depth) of the original type. 

If there was no encoding object for the constructor #My-Sequence-Class, then this is de-referenced to produce 
(say) #SEQUENCE, which can if necessary be further de-referenced (using the ECN built-in assignment 
"#SEQUENCE ::= #CONCATENATION") to produce #CONCATENATION. If there are no encoding objects 
of the class #SEQUENCE or #CONCATENATION in the set, then the specification is in error. 

Note that the encoding object set can (and is likely to) contain encoding objects for both #My-Sequence-Class 
and for #SEQUENCE. Indeed, to make this easier, encoding object sets that are actually applied to perform 
encodings are usually constructed by the syntax: 

 
                ENCODED BY My-Encoding-Object-Set 
                        COMPLETED BY PER-BASIC-UNALIGNED 

(Use of "PER-BASIC-UNALIGNED" is just an example. It could just as well have been "DER", or "PER-
CANONICAL-ALIGNED".) 

The "COMPLETED BY" forms what is called a combined encoding object set. This set contains all the 
encoding objects in "My-Encoding-Object-Set", plus any objects from the "PER-BASIC-UNALIGNED" set that 
are for encoding classes for which there is no encoding object in "My-Encoding-Object-Set". 

A very important part of the above specification is that the encoding object for "#My-Sequence-Class" gets 
control before the determination of the encodings of the components. That encoding object is allowed to replace 
the entire structure, all components, all mandatory components, or all optional components, with a new 

This is what it is all about. How to encode 
your top-level messages. 



  19 

(parameterised) structure in which the existing structure/components are included as actual parameters. It is only 
after any such specified replacements that encoding proceeds to the components. 

It is important to note here that if we have the situation that: 
– Some of the repetitions in the structure are named as "#My-repetition-encoding" (a synonym for 

"#REPETITION"); 
– Others are named as "#SEQUENCE-OF" (also a synonym for "#REPETITION"); and 
– The applied encoding object set includes an encoding object for "#My-repetition-encoding" but 

also the (basic unaligned, say) PER set of encoding objects; 

then the encoding object for "#My-repetition-encoding" will be applied to all occurrences of that class, and basic 
unaligned PER encoding objects will be applied to the "#SEQUENCE-OF" classes. 

It is possible to "color" (see below) an implicitly generated structure, leaving some of the implicitly generated 
"#SEQUENCE-OF" classes unchanged, but changing others to "#My-repetition-encoding". This enables some 
ASN.1 sequence-of constructions to be encoded using standard encoding rules, whilst others are encoded using 
specialized encodings. 

This of course generalizes to the case where there are multiple different specialized encodings needed for the 
ASN.1 "SEQUENCE OF" construction. 

3.9 Explicitly generated encoding structures 

3.9.1 Introduction 

An explicitly generated encoding structure is one which is 
created in (and exported from) an EDM module by importing 
and "coloring" an implicitly generated encoding structure 
from an ASN.1 module. 

The explicitly generated encoding structure can be used within the EDM module that generates and exports it, 
but as a matter of style (and for simplicity and clarity) it is better if this is not done. 

The ECN syntax is such that generation of an explicitly generated encoding structure causes its automatic export. 
This is important, because such a structure is only of use if an ELM can import it and apply encodings to it. 

The explicitly generated encoding structure has the same simple class name as the implicitly generated encoding 
structure, but its fully-qualified name includes the module name of the EDM module that generated it. The 
implicitly generated encoding structure has a fully-qualified name that includes the name of the ASN.1 module 
in which the corresponding ASN.1 type was defined. 

It is possible (but would be unusual) to define multiple explicitly generated encoding structures for an ASN.1 
type (strawberry flavor, raspberry flavor, along-side the vanilla flavor of the implicitly defined encoding 
structure). Each of these different flavors could be imported into an ELM and encodings applied to it. These 
would produce different encodings for the original ASN.1 type. (There is, however, a rule that an ELM is not 
allowed to apply encodings to structures that have been generated from the same ASN.1 type.) 

This simply reinforces the point that the encoding of an ASN.1 type is the encoding of a corresponding structure. 
The ELM determines (by importing it) the encoding structure to use, and the association between that structure 
and the ASN.1 type determines the type that the ELM is defining encodings for. 

3.9.2 Defining an explicitly generated encoding structure 

An explicitly generated encoding structure is defined by importing an implicitly generated encoding structure 
from an ASN.1 module, "coloring" it, and then exporting the result. The entire operation is performed in a 
"GENERATES-AND-EXPORTS" clause in an EDM, which appears between any "EXPORTS" clause and any 
"IMPORTS" clause. 

As a matter of style, and for human readability, it is recommended that an EDM module performing "coloring" 
contains only a "GENERATES-AND-EXPORTS" clause. 

Oh dear! It was all supposed to be done by 
implicitly generated structures. Now we have 
to learn how to explicitly generate structures. 



20 

What then is "coloring"?  Coloring is the replacement of some class names in an implicitly generated structure 
with different class names that are required to have been defined as synonyms for the names being 
replaced. 

The purpose is to indicate which parts of the structure are to be encoded using specialized encodings. 

The classes being replaced can be any of the classes appearing in the structure, but will most commonly be a 
concatenation, optional, identifier, repetition, or alternative category of encoding class. 

Real-world examples of coloring can be found in the ETSI ECN Case Studies. Here is a small example: 
 
        EDM-coloring-module 
        {joint-iso-itu-t(2) To be supplied} 
        ENCODING-DEFINITIONS ::= 
        BEGIN 
        EXPORTS My-encodings; 
            -- An object set containing all specialized encodings 
        GENERATES-AND-EXPORTS 
            REPLACING 
                #OPTIONAL WITH #My-Optional 
                    IN ALL 
            REPLACING 
                #SEQUENCE-OF WITH #My-Sequence-of 
                    IN ALL EXCEPT #Group-Identity-Uplink, #Proprietary 
            REPLACING 
                #SEQUENCE WITH #My-Sequence 
                    IN #Group-Identity-Location-Demand 
                    EXCEPT #Group-Identity-Location-Demand.gia 
            FROM My-ASN1-module {joint-iso-itu-t(2) ........ }; 
 
        #My-Optional  ::= #OPTIONAL 
        #My-Sequence-of  ::= #SEQUENCE-OF 
        #My-Sequence  ::= #SEQUENCE 
 
        my-opt-encoding #My-Optional ::= ...... 
                -- An encoding object for the #My-Optional class 
 
        my-sequence-of-encoding #My-Sequence-of ::= ...... 
                -- An encoding object for the #My-Sequence-of class 
 
        my-sequence-encoding #My-Sequence ::= ...... 
                -- An encoding object for the #My-Sequence class 
 
        My-encodings #ENCODINGS ::= { my-opt-encoding | 
                                             my-sequence-of-encoding | 
                                             my-sequence-encoding } 
            END 

The module automatically exports the "colored" structure. It also defines encoding objects for the specialized 
encoding classes it has inserted into the structure (using syntax to be discussed below)), and forms these into an 
encoding object set (the last assignment statement) and exports this for use in an ELM. There it will (probably) 
be applied to the top-level structure in the set of explicitly generated structures that have been generated and 
exported using "GENERATES-AND-EXPORTS". 

The "GENERATES-AND-EXPORTS" clause may have several comma-separated clauses terminating with 
"FROM", but this would be unusual. 

The above definition imports all the implicitly generated structures from the ASN.1 module "My-ASN1-
module" (there is one for each type assignment in the module), and generates and exports explicitly generated 
structures for all of these. The explicitly generated structures have the same simple names as the implicitly 
generated structures, but the fully-qualified names now include "EDM-coloring-module". An ELM wishing to 
import one of them (in order to define the encoding of top-level messages in the ASN.1 module) will import 
from the "EDM-coloring-module". 

The above "GENERATES-AND-EXPORTS" specification identifies locations for changes, on what is 
effectively a textual basis. It references either the entire set of implicitly generated encoding structures from the 



  21 

ASN.1 module (use of "ALL"), or names a single implicitly generated encoding structure, or names a component 
of that structure. The word "EXCEPT" is used in the obvious way, with either "ALL" or a list of one or more 
locations before the "EXCEPT", and a list of one or more locations after the "EXCEPT". 

3.10 Defining encoding rules, parameterization, and replacement 

The intention here is to illustrate the dependence of ECN 
on parameterization and replacement mechanisms, when 
rules for encoding arbitrary ASN.1 are needed. Some of 
the examples given here use syntax that is discussed and introduced more fully later, and this makes the sub-
clause a little heavy. However, the intent of the syntax is described, and the reader should concentrate on 
understanding the use of parameterization and of replacement, not on the syntax for individual definitions. 

It is relatively easy to define encodings for a given structure, but in most real situations, a particular style of 
encoding (for example, use of an immediately preceding "presence-bit" mechanism for an optional element) is 
something that occurs in many places in a protocol, but with (in the above example) a different type as the 
optional component on each occurrence. 

This proves to be slightly more complex. 

What is needed is to "color" instances of such #OPTIONALs (as described above), so that they become #My-
Optional, and then to define an encoding object for #My-Optional that will specify the required encoding for any 
optional component. This means parameterization of the specification, with a parameter that is the class of the 
optional component. This is exactly the same concept as in ASN.1, but it is heavily used in real ECN work. 

We first define a parameterised structure that contains the presence bit with the component: 
 
        #New-component {< #Any-class >} ::= 
                #SEQUENCE { 
                   presence-bit  #BOOL, 
                   component     #Any-class #My-Inner-Optional} 

(In fact, if we miss out the presence-bit field, use a normal #OPTIONAL, and apply basic unaligned PER 
encodings to #New-component, we will get the desired effect, and everything is a lot simpler, but for the 
purposes of this tutorial, that would be cheating!  So fill up your cup of strong coffee again! 

Note that the syntax (see above) for parameter lists in ECN is "{<" and ">}", not the "{" and "}" used in ASN.1. 
This is to resolve ambiguities resulting from the ability to have synonyms for #SEQUENCE etc. 

The #New-component structure can be used to replace any optional component that we wish to encode this way. 

The second key feature is to get that replacement done automatically when we apply encodings. 

We need eventually specify an encoding object for "#My-Optional", requiring it to: 
– First replace the subject of the "#My-Optional" with the structure "#New-component", 

instantiating it with an actual parameter which is the subject of the "#My-Optional". 
– Then to apply encodings to the instantiation. 

This ability to require (if you wish to do so) encoding objects for constructors to perform replacements applies to 
all constructor classes, and is very powerful. In the case of the concatenation category of class, the replacement 
can be of all optional elements, or of all mandatory elements, or both (with different replacements for the two 
cases if required). In all cases it is also possible to specify replacement of the entire structure. 

(There is also the ability to specify "head-end insertion" of additional fields in the case of a concatenation, but 
that goes beyond the scope of this tutorial.) 

Whenever replacement takes place, the replacing structure is required to have a class parameter, and the 
instantiation uses the replaced structure as the actual parameter, thus preserving the abstract values that were 
present in the original structure. 

The encodings to be applied to the instantiation are the ones being applied globally, plus an encoding object for 
the instantiation of "#New-component". We need to define the latter, and to supply that in the definition of the 
encoding object for "#My-Optional". 

Warning: This section gets a bit heavy!  Wet-
towels and lots of coffee are in order! 



22 

Our last actions in this clause will be to define that encoding object. As it is an encoding object for a 
parameterised class, it has, of course to be parameterised. (The encoding object for "#My-Optional" will 
instantiate it with the same parameter as it provides for the instantiation of the "#New-component" structure.) 

But .... yes, a second parameter is required. In defining the encoding object for the "#New-component" structure, 
we need to encode all the components, but the encodings needed for the "#Any-class" component will be the 
combined encoding object set being globally applied in the ELM (which contains the encoding object for "#My-
Optional"), so we need an "#ENCODINGS" parameter as well. The end-result is shown below. 

For the encoding object for "#My-Inner-Optional" we define: 
 
        my-inner-opt-encoding {< REFERENCE: presence-bit-parm >} ::= 
                { DETERMINATION MECHANISM aux-determinant 
                  DETERMINED BY presence-bit-parm } 

This says that the optionality will be resolved using a determinant which is an auxiliary field that carries no 
application semantics. (The field here is assumed to be a boolean, with TRUE meaning present. We can add 
additional syntax to reverse that, or to use an integer field, but this part of the tutorial is getting over-weight 
anyway, so let's keep it simple!) 

The actual determinant field is the dummy parameter "presence-bit-parm". 

For the encoding object for "#New-component" we define: 
 
        new-component-encoding {< 
                        #Any-class, 
                        #ENCODINGS: Global-encodings >} 
        #New-component {< #Any-class >} 
                ::= 
                { ENCODE STRUCTURE 
                      { component 
                                OPTIONAL-ENCODING 
                                my-inner-opt-encoding 
                                    {< presence-bit >} } 
                  COMPLETED BY Global-encodings } 

This says that the encoding of #New-component is the encoding of the optionality of "component" by "my-inner-
opt-encoding" with the actual reference parameter "presence-bit" (identifying a component of #New-
component), and with all other encodings provided by the encoding object set parameter "Global-encodings". 

We supply #New-component and "new-component-encoding" in the definition of an encoding object for #My-
optional (including this in the encoding object set to be applied in the ELM), and we are done! 

Let's go the last mile: 
 
        encoding-for-my-optional #My-optional ::= 
                { REPLACE COMPONENT WITH #New-component 
                  ENCODED BY new-component-encoding } 

A nice simple ending! 

3.11 Differential encode/decode actions 

Extensibility has been discussed earlier. There are many, 
many different approaches. But they all rest on the principle 
that when decoding you have to be prepared to accept (and 
to skip) things (usually random garbage!) that is different from what you are required to produce. 

Here are some cases that arise: 
– A reserved field, where version 1 is required to set it to zero, but to accept (and usually to ignore) 

any values in it. 
– "Tail-end" optionals, where a system is required to ignore anything after the decoding of the 

known type is finished, and to accept absence of known tail-end optional elements. (In the 
simplest case a tail-end optional can only be included if earlier elements are included). 

You can't do it, but others can! And you can't 
even understand what they have written! Rotten! 



  23 

– Use of a TLV (Type, Length, Value) style of encoding, with instructions to skip and ignore 
elements with unknown types. 

– Embedded extensions, with one or more length fields to enable versions ignorant of the extensions 
to skip the embedded material. 

The bottom line, however, is that rules for encoding are different from those for decoding. Typically the encoder 
has a fixed specification of what to encode, but a decoder is told to assume that the sending encoder is operating 
to a different specification which allows random material (perhaps with a length wrapper mechanism known to 
all versions) to be included. 

In ECN, this is called "differential encode/decode", and is supported at the highest level. For any encoding class, 
it is possible to define encoding objects (the reader must have got that message by now!). However, for any 
class it is also possible to define a differential encode/decode object that is simple a pair of encoding objects 
(defined in any of the many ways ECN provides). The first of the pair are the rules for encoding the class, and 
the second of the pair are the rules that a decoder should assume were used by a sender in encoding that class. 

The classes to which differential encode/decode are applied invariably carry no application semantics - they are 
simply padding to an early implementation. The use of differential encode/decode is normally associated with 
the presence in a structure of #EXTENSIONS and #VERSION-BRACKETS, but it can be useful even when the 
ASN.1 specification does not use an extension marker, and relies entirely on differential encode/decode in ECN 
to specify its extensibility mechanisms. 

This approach is, however, generally not recommended, because it is desirable for the application code to be 
aware of places where extensions are likely to occur in later versions. It is also frequently the case that 
extensions occurring in some places are "critical" and extensions occurring in other cases are "non-critical". This 
is best formally flagged by the ASN.1 exception marker on the extensions ellipsis, but of course human text can 
be used to describe these places. 

3.12 Other fundamental concepts 

This tutorial is too long already, but there remain some additional concepts. These are, however, very much for 
advanced use. Text may be added to this section in a later version of the tutorial, but for now there is just a list of 
further features: 

– The #TRANSFORM class and its uses. (This allows, among other things, fields to be incremented 
or decremented or scaled-up before being used as determinants.) 

– The #OUTER class. (This provides control over the padding of an outer-level encoding to – for 
example – an octet boundary, and the setting of reference points for alignment.) 

– Using identification handles. (This generalises the BER “tag” concept to enable parts of an 
encoding to provide identifications that can act as choice or presence determinants.) 

– Encoding objects that examine the bounds of integers or repetitions. (This enables a single 
encoding object to provide different encodings, depending on whether the actual instance of its use 
contains only bounded integers or contains unbounded integer values.) 

– When fully-qualified names are needed. (This is detailed “scope rule” issues, and arises partly 
because there are some names allowed for ASN.1 types which, when a “#” is put in before them, 
become the same (reserved) names as are given to some built-in encoding classes.) 

4 The process of defining a legacy protocol 
Examples of this process can be found in the 
ETSI ECN Case Studies, and are not provided 
here. This clause simple describes the steps, and 
gives some good advice! 

4.1 Writing the ASN.1 

Surprisingly, it is not easy to write good ASN.1 for a legacy protocol. (But I suppose some might say it is not 
easy to write good ASN.1 full-stop - there are some bad examples around!) 

The choice of names for fields and types has to be a balance between reasonable brevity and maintaining a good 
link to the legacy protocol specification. 

I **hate** good advice, and **never** take it! 



24 

The most important decision, however, is what fields to make visible in the ASN.1. Writing the ECN can be 
easier if all fields in the encoding are reflected in ASN.1 components, but this is usually a bad design. The 
ASN.1 should normally only contain components for encoding fields that carry application semantics, not for 
auxiliary fields needed only for encoding purpose and providing presence and length determination, etc. 

Additional fields can be added using ECN replacement mechanisms where necessary. 

This point is quite important, because ASN.1+ECN tools will provide a, say, C or C++ or Java API that contains 
the components in the ASN.1 definition, delimiting them (or indicating choices/unions) in a language specific 
way. Having the same delimitation present in other parameters of the API just confuses the implementor, makes 
for larger implementation code, and increases testing complexity. 

The increased testing complexity arises because there needs to be a check that the application code has correctly 
set the length component to the length of the component actually sent for encoding, rather than leaving the 
setting of the length field in the encoding entirely to the - hopefully tried and trusted! - encoding tool. 

The ASN.1 should not be contorted to aid encoding, but suppose the legacy protocol specifies that: 
– There are mandatory elements followed by optional elements. 
– At the end of the mandatory elements there is an "options bit" that says whether at least one of the 

optional elements are present. 
– If the "options bit" is set, each optional element has its own presence bit. 

In this case, producing the ECN specification will be considerably eased if the optional elements are enclosed 
within an optional SEQUENCE, rather than simply being optional elements within the main PDU. The presence 
or absence of the optional SEQUENCE can then be used to generate the "options bit" that is required in the 
encoding. 

Decisions of this sort are invariably somewhat subjective - there can never be one right piece of ASN.1 to 
describe a legacy protocol, but some can be said to be better than others! 

4.2 "Coloring" the ASN.1 

So we have written our ASN.1 specification. 

Where we have some integers that are to be encoded one way (perhaps in binary) and some another (perhaps 
with BCD), we can reasonably identify these using different types both defined as "INTEGER": 

 
        Binary-integer  ::= INTEGER 
 
        BCD-integer   ::= INTEGER 

and use those types in the body of the specification. (A purist would argue that this is bad ASN.1 - it contains 
encoding information, but let's leave that for the moment.) 

We can then define encoding objects for "#Binary-integer" and for "#BCD-integer", and all is done. 

However, in the case of different encodings for optionality, or for sequence-of, we have no mechanism in ASN.1 
to define synonyms for these constructors. You can't write: 

 
        My-sequence-of  ::= SEQUENCE OF 

(But of course you can do this in ECN, as we have seen earlier.) 

The problem is over-come by "coloring" the implicitly generated encoding structure to produce an explicitly 
generated encoding structure in which the different "flavors" of sequence-of or optional encoding are clearly 
distinguished. Doing this "coloring" was described earlier. 

It is normally good practice to reserve an EDM module to provide only the coloring, and to define and export the 
necessary class assignments such as that above. 

For a small specification, however, it may be appropriate to include in that same EDM module the definition of 
the encoding objects for each of these specialized classes. 

Notice that if you are a purist, and don't like defining "Binary-integer" and "BCD-integer" described above, you 
can leave all fields as "INTEGER", and use "coloring" to selectively change "#INTEGER" to "#Binary-integer" 
or to "#BCD-integer". 



  25 

Finally, while it may be "cheating" (and we avoided doing it in an example above), you should use your 
knowledge of PER encodings and apply PER (probably the unaligned version) wherever possible. This will 
generally reduce the size of an ECN specification, but is also likely to speed up encode/decode processing with 
most ASN.1+ECN tools. 

4.3 Defining the necessary encoding objects and object sets 

The third step is to define the encoding objects for the specialized encodings needed. 

There are many different ways of doing this, but most will probably involve some form of replacement of a class 
with another more complex class and then encoding that. 

The later parts of this tutorial describes the different ways of defining encoding objects, and there are many 
examples in the Examples Annex of the ECN Standard. 

Depending on the size of the task, the encoding objects can be grouped into a single EDM module, or can be 
defined in separate modules and exported. 

You will generally want to produce an encoding object set containing all your specialized encodings, probably 
"COMPLETED WITH" the PER-basic-unaligned encoding object set, ready for application in the ELM. 
Alternatively, you can simply import each encoding object into the ELM and build the set in-line when you 
apply it. This would normally only be sensible if the ELM contains just a single encoding application. 

4.4 Applying the encodings 

The final step is to write your ELM module and to clearly identify it in the text describing the application. The 
ELM module has been designed to be simple and short, but provides (as its name implies) links - perhaps 
indirectly - to all other modules involved in the application specification. An example of an ELM module is 
given later in this tutorial, and in the Examples Annex of the ECN Standard. 

5 How to define encoding objects 

5.1 Model for defining simple bit-field encoding objects 

Much of this tutorial so far has concentrated on defining 
special mechanisms for constructors and for #OPTIONAL. 
In this sub-clause we are concentrating primarily on defining 
(special) encodings for things like #BOOL, #INT, #BITS, 
and so on. Definition of encoding objects for constructors 
play a dual role. They are primarily concerned with the replacement of components, and with procedures for 
termination of repetitions, identification of alternatives, determination of optionality, and so. However, they also 
wrap-up the encoding of components to produce a bit-field in the encoding, and some of the functionality 
described below for simple bit-fields (for example, pre-alignment) is also present for constructors. 

A picture is worth a thousand words. See the figure on the next page. 

In defining simple encoding objects, values have to be given for a number of key encoding parameters that 
together totally define the encoding. It is the choice of these key encoding parameters that determines the 
"quality" of ECN in this area, and whether it is capable of specifying the encodings that a user wants. (The use of 
the expression "encoding parameter" here should not be confused with the earlier use of "parameterization". The 
use here is normal English.) 

To understand this part of ECN, the available encoding parameters have to be understand, and many of them 
relate to the above figure. In broad terms they break down into two sets of encoding parameters: 

– Encoding parameters concerned with the amount of space the value will encode into (including the 
units of space allocation and how the end of a variable length space is to be determined). 

– Encoding parameters concerned with the actual bit-patterns used to represent values associated 
with the class. 

These are called, respectively, definition of the encoding-space and definition of the value-encoding. 

Encoding-space and value-encoding are the key 
terms, but there are many, many other things 
to be concerned with! 



26 

The set of encoding parameters for defining the encoding-space is in most cases both the larger set of encoding 
parameters and the most complex!  However, these encoding parameters are generally common to the definition 
of encoding objects of most classes, whereas the set concerned with value-encoding tend to be different for each 
class. 

The distinction between these two sets of encoding parameters is much less clear today than it was in early work, 
and there are also encoding parameters associated with the replacement of components by other structures that 
fall into neither category. 

In all cases where bits are being generated, there are the following activities that can be specified: 

– Specification of so-called pre-padding. This provides for alignment of the start of the encoding 
space to (for example) a byte or word boundary, and the pattern of any padding that is inserted. 

– Specification of the encoding-space unit (the encoding space is always a multiple of this unit). 
– Specification of the value-encoding. 
– Specification of the positioning of the value-encoding (typically right or left justified) in the 

encoding space, with the pattern of any padding that has to be inserted. 
– Finally, there are encoding parameters to determine whether reversal of octets or of bits within an 

octet is to occur before the total encoding is passed for transmission. 

The model focuses primarily on rules for encoding. Decoders have to work out for themselves how to decode 
such material, but in most cases it is quite obvious from the encoding specification. 

Alignment to word boundaries (for example) counts bits "from the start of the encoding". There is one exception 
to this: if the ASN.1 contents constraint (introduced by “CONTAINING” and “ENCODED BY”) has been 
applied to a bit string or octet string type, then alignment in the contents encoding can either be relative to the 
start of the bit or octet string, or relative to the start of the encoding. This is controlled by the encoding object 
applied to the bit or octet string. 

A question to the reader - you have heard of defining Information Object Classes, and the "WITH SYNTAX" 
clause?  This is nothing to do with ECN, it is a feature added to ASN.1 in the early 1990s, but not all users of 
ASN.1 are familiar with it. The definition of encoding parameters for defining encoding objects for simple 

101011110 

Encoding so far 

Alignment from start of encoding 

Encoding-space 
pre-padding 

Encoding-space unit 

Encoding-space 

Value-encoding

1001100100100100 

Value pre-padding 

Value post-padding 

Encoding then added to bits-on-the-line, 
possibly with bit, octet, etc reversal 



  27 

classes, and the definition of the syntax to be used in such definition uses a very similar notation. But do not 
despair - if you have never met these concepts, the notation is fairly obvious and user-friendly! 

The set of encoding parameters for defining encoding objects of simple bit-field classes (and also for 
constructors) are specified for each class in Annex A of the ECN Standard.  Each class has roughly a page of 
definitions of the encoding parameters available to define it, using a notation for defining these encoding 
parameters that is a minor variation of the syntax used to define Information Object Classes. A reader wishing to 
understand the Annex A specification needs to have a reasonable understanding of Information Object Classes. 
(A description of each parameter is given in clause 19 of the ECN Standard, and readers wanting more 
information should consult that clause.) 

Each Annex A specification ends with a "WITH SYNTAX" clause which defines the syntax to be used for 
specifying values of the encoding parameters. Again, the notation used in defining this syntax is that which 
ASN.1 users use in specifying a "WITH SYNTAX" clause in an Information Object Class definition. Formally, 
defining encoding objects using this syntax is called using defined syntax for the definition of an object. 

An important feature of the Annex A specification is the extensive use of default values, which generally means 
that most of the time the majority of encoding parameters can be omitted. 

Here is the definition of encoding parameters for defining an encoding object of class #BOOL, copied from the 
ECN Standard.  Don't worry if you do not understand it!  Just get the flavor! Clause 8 of this Tutorial states the 
intention to provide tutorial material (in a subsequent version) for each of the specifications in Annex A. That 
text will describe the syntax in an informal manner, and knowledge of the formal notation shown below will not 
be assumed. The definition for #BOOL is: 

 
#BOOL ::= ENCODING-CLASS { 
 
-- <Pre-alignment> 
  &encoding-space-pre-alignment-unit     Unit (ALL EXCEPT repetitions) DEFAULT bit, 
  &encoding-space-pre-padding            Padding DEFAULT zero, 
  &encoding-space-pre-pattern             Pattern (ALL EXCEPT other) 
                                           DEFAULT bits:'0'B, 
 
-- <Bool value-encoding> 
  &value-true-pattern                     Pattern DEFAULT bits:'1'B, 
  &value-false-pattern                    Pattern DEFAULT bits:'0'B, 
 
-- <Encoding space> 
  &encoding-space-unit                    Unit (ALL EXCEPT repetitions) DEFAULT bit, 
  &encoding-space-size                    Size (uses-determination-mechanism | fixed-to-max | 

1..MAX) OPTIONAL, 
 
-- <Padding> 
  &value-justification                    Justification DEFAULT right:0, 
  &value-pre-padding                      Padding DEFAULT zero, 
  &value-pre-pattern                      Pattern (ALL EXCEPT other) 
                                           DEFAULT bits:'0'B, 
  &value-post-padding                     Padding DEFAULT zero, 
  &value-post-pattern                     Pattern (ALL EXCEPT other) 
                                           DEFAULT bits:'0'B, 
 
-- <Determinant> 
  &encoding-space-length-determinant     REFERENCE OPTIONAL, 
  &Encoder-transforms                                    #TRANSFORM ORDERED OPTIONAL, 
-- Transforms from a count in &encoding-space-unit to actual "REFERENCE". 
 
-- <Primitive handle information> 
  &handle-id                              PrintableString OPTIONAL, 
  &Handle-positions                            INTEGER (1..MAX) OPTIONAL, 
 
-- <Bit reversal> 
  &bit-reversal                              ReversalSpecification 
                                           DEFAULT no-reversal  } 
 
WITH SYNTAX { 
        [ENCODING-SPACE 



28 

[ALIGNED TO &encoding-space-pre-alignment-unit 
                                [PADDING &encoding-space-pre-padding 
                                        [PATTERN &encoding-space-pre-pattern]]] 
 [SIZE &encoding-space-size] 
 [MULTIPLE OF &encoding-space-unit] 
 [DETERMINED BY &encoding-space-length-determinant 

[ENCODER-TRANSFORMS &Encoder-transforms]]] 
        [VALUE          [TRUE-PATTERN &value-true-pattern] 
                                        [FALSE-PATTERN &value-false-pattern] 
                        [JUSTIFIED &value-justification] 
                        [PRE-PADDING &value-pre-padding 
                                [PATTERN &value-pre-pattern]] 
                        [POST-PADDING &value-post-padding 
                                [PATTERN &value-post-pattern]]]  

[HANDLE &handle-id AT &Handle-positions] 
 [BIT-REVERSAL &bit-reversal] 

} 

Now let us use that notation to completely define an encoding object for #BOOL. (We are on page 20+ of the 
tutorial and this is your first example of an actual encoding object definition - oh dear!) 

Our first example will encode into a single bit (with no alignment), but just to be awkward, we will use zero for 
true and one for false!  We get: 

 
        my-bool-encoding #BOOL ::= 
                {ENCODING-SPACE 
                        SIZE 1 
                        MULTIPLE OF bit 
                VALUE 
                        TRUE-PATTERN  bits:'0'B 
                        FALSE-PATTERN bits:'1'B } 

Now suppose we want some or our booleans encoding into a single octet, starting on an octet boundary (padding 
with zeros if necessary - the default padding, so we don't specify it). This time we want an encoding of zero for 
false and any-non-zero octet for true (similar to BER). We "color" our structure with "#BOOL2" (defined below 
as a synonym for #BOOL), and write: 

 
        #BOOL2 ::= #BOOL 
 
        my-bool2-encoding #BOOL2 ::= 
                {ENCODING-SPACE 
                        ALIGNED TO octet 
                        SIZE 1 
                        MULTIPLE OF octet 
                 VALUE 
                        TRUE-PATTERN octets:'00'H 
                        FALSE-PATTERN other } 

Our encoding object set can contain both "my-bool-encoding" and "my-bool2-encoding", and dependent on the 
coloring, one or other will encode boolean fields. 

5.2 Mechanisms for defining encoding 
objects 

There are seven mechanisms available for defining encoding 
objects of some class.  Use of "defined syntax" described above 
is just one of these seven mechanisms.  We briefly discuss and illustrate each mechanism below. 

5.2.1 Use of an already-defined encoding object name 

Suppose we have defined "my-bool2-encoding" as above.  We 
can define a new encoding object with a different name by 
writing: 

 

Seven mechanisms - what a surprise! The 
magic seven comes up yet again! 

Very simple things are sometimes very 
powerful, but this one isn't! 



  29 

        second-bool2-object #BOOL2 ::= my-bool2-encoding 

The class of the object to the right of the "::=" has to be the same as the governor, so this rather simple 
mechanism is no big deal! 

5.2.2 Use of "defined syntax" 

"Defined syntax" has been extensively discussed and illustrated 
above. A later version of this tutorial will provide a detailed 
description of each of the "Annex A" defined syntaxes, their 
keywords and their functionality. 

The Annex A syntax is, however, still a little unstable, with some of the keywords and keyword combinations 
not reading too well, so effort has not been put into writing a tutorial for this material at this time. 

5.2.3 Use of an existing encoding object set 

We can write: 
        per-int-encoding #INTEGER ::= 
                { ENCODE WITH PER-BASIC-UNALIGNED } 
or 
        per-structure1-encoding #Structure1 ::= 
                { ENCODE WITH DER } 

This syntax is illustrated using standardized encoding object sets, but any object sets can be used, including if 
necessary a "COMPLETED BY" clause (illustrated earlier) to form a combined encoding object set to be applied 
to the class for which we need an encoding. 

5.2.4 Use of value mappings 

This is a powerful mechanism with many applications.  We want an 
encoding object for an existing class (perhaps a simple "#INTEGER" 
class, or perhaps a more complex class - call it "#Old-class"). This class 
does not contain all the fields that we need in our encoding (perhaps it 
was an implicitly generated class for some part of our ASN.1 definition). 

We can proceed as follows: 
– Define a new structure that contains all the fields in our required encoding (call this 

"#Replacement-structure"). 
– Specify the way values of "#Old-class" map into values of "#Replacement-structure", using value 

mapping syntax described below. 
– Specify that encoding of values of "#Old-class" is the encoding of the corresponding value of 

"#Replacement-structure", encoded by some encoding object for the class "#Replacement-
structure". 

In this case, we will be a bit clever, and instead of defining and naming an encoding object of class 
#Replacement-structure for the last bullet, we will define it in-line using the "ENCODE WITH" syntax described 
above. 

We write: 
 
        encoding-for-old-class #Old-class ::= 
                { USE #Replacement-structure 
                  MAPPING 
                  ...... 
                  WITH 
                    { ENCODED WITH PER-BASIC-UNALIGNED } 
                    -- The above line is defining an encoding object 
                    -- for the class #Replacement-structure 

There are a number of pieces of syntax that can be used to perform value mapping between two structures.  
These are described in Section 5.3. 

An ECN sub-language: Designed to be 
easy to read! Is it? 

Sub-titled: How to get your 
hands on a PER encoding object! 

Now here *is* power! But there 
are several variants, and we need 
another clause to cover them all! 



30 

None of these pieces of syntax work for arbitrary and totally dissimilar structures of "#Old-class" and 
"#Replacement-class", but there is syntax to support most value mappings between two structures that can be 
considered "obvious". 

5.2.5 Encoding a structure component-by-component 

This mechanism enables an encoding object to be defined for a class that is an 
encoding structure. The reference name for the structure is de-referenced to give 
the definition of that structure, but no further de-referencing takes place. The 
encoding is specified by listing any (or all) of the field-names which are now visible in the structure and 
specifying encodings for those fields, and for the constructor at the head of the structure. (The mechanisms also 
apply to a structure that is headed by a repetition category of class). 

Suppose we have a structure: 
 
        #Sequence1 ::= #SEQUENCE { 
                a               #Structure1, 
                inserted        #BOOLEAN, 
                b               #INTEGER #OPTIONAL, 
                c               #OCTET-STRING } 

Then we can define an encoding object for it with: 
 
        sequence1-encoding #Sequence1 ::= { 
                ENCODE STRUCTURE { 
                  b OPTIONAL-ENCODING 
                        {ENCODING-SPACE AS aux-determinant 
                         DETERMINED BY inserted } } 
                WITH { ENCODE WITH PER-BASIC-UNALIGNED } } 

Here we are applying a special encoding for the optionality of "b", referencing field "inserted" as the 
determinant.  Everything else is encoded with "PER-BASIC-UNALIGNED".  We could also have specified a 
specialized encoding object for the #INTEGER in "b", and/or for fields "a", "inserted", and "c", and/or for the 
#SEQUENCE constructor itself (the latter specification would include the keywords "STRUCTURED WITH"). 

This mechanism provides a flexible way of defining encoding objects for a general structure, and would usually 
be combined with the definition of value mappings from an old structure to a new structure that had additional 
auxiliary fields in it (for example the "inserted" field in the above example). 

5.2.6 Differential encode/decode object definition 

We have already discussed the concept of differential encode/decode 
objects.  These are simply the combination of two encoding objects, 
one specifying the encoding to be used, the other specifying the 
encoding to be assumed when decoding.  The syntax is fairly straight-
forward: 

 
        object-for-tail-end-additions  #PAD ::= 
                { ENCODE-DECODE 
                        {ENCODING-SPACE SIZE empty} 
                        -- Specifies an empty encoding for ENCODE 
                  DECODE AS IF 
                        {SIZE uses-determination-mechanism 
                         DETERMINED BY container 
                         CONTAINED IN end-of-encoding:NULL 
                         PADDING encoder-option } } 

Here we specify both the encoding object and the assumed decoding object in-line.  For encoding, the #PAD 
field (assumed to be placed at the end of the PDU) is encoded as an empty string (no bits). For decoding, the 
decoder assumes an encoder has put arbitrary padding in the #PAD field, up to the end of the PDU.  This is a 
common approach to provisions for extensibility, and formally specifies that implementations of this version of 
the protocol should ignore additional material at the end of the encoding up to the end of the containing PDU. 

Divide and conquer! 

Now you have two lots of encoding 
rules to worry about! 



  31 

5.2.7 User-defined encoding-functions 

User-defined encoding-functions allow an encoding object to be defined using any notation you wish!  Very 
flexible, but probably not much use for standardized encodings. The chosen notation can even be comment. 

Try: 
        encoding-of-funny-type #Funny-type ::= 
                USER-FUNCTION-BEGIN 
                {joint-iso-itu-t(2) etc } -- specifies the notation used 
                /* Pseudo-code for encoding values of #Funny-type */ 
                   ...... 
                /* Pseudo-code for decoding values of #Funny-type */ 
                   ...... 
                USER-FUNCTION-END 

Tool support for user-defined functions is likely to take the form of an escape from the standard encode/decode 
procedures to an application function that will provide code for the specified encoding. 

There may be some notations that could be used in the user-defined function that have tool support (for example, 
CSN.1), but it should normally be possible to define any encodings that are really needed using the only 
formally-defined ECN syntax (which will have full integrated tool-support).  This mechanism is an escape if 
ECN fails you in some detailed part of your specification. 

5.3 Value mapping mechanisms 

Here we look briefly at the syntax which is used for the 
value mappings discussed above. 

Recap:  This notation appears in place of the "......" below: 
 
        encoding-for-old-class #Old-class ::= 
                { USE #Replacement-class 
                  MAPPING 
                  ...... 
                  WITH 
                    encoding-of-replacement } 

It provides mappings of values from "#Old-class" to "#Replacement-class". 

5.3.1 Mapping single values 

This notation is available only if both "#Old-class" and 
"#Replacement-class" are classes implicitly generated from 
primitive ASN.1 types, and the mapping uses the ASN.1 
value notation for those types.  Quite simply, the notation is a 
list of pairs of values, one from "#Old-class" and one from "#Replacement-class".  It can therefore map only a 
finite set of values.  An example might be: 

 
        encoding-for-old-class #UTF8String ::= 
                { USE #INTEGER 
                  MAPPING VALUES { 
                     "0" TO 0, "1" TO 1, "2" TO 2, "3" TO 3, 
                     "4" TO 4, "5" TO 5, "6" TO 6, "7" TO 7, 
                     "8" TO 8, "9" TO 9, "*" TO 10, "#" TO 11 } 
                  WITH 
                    encoding-of-integer } 

Where the mapping is from "#INTEGER" to "#BITS", syntax with slightly more functionality (ranges can be 
specified) is available - see below. 

5.3.2 Mapping by matching fields 

Here "#Old-class" and "#Replacement-class" have to be 
"similar".  The syntax is intended for the case where 
"#Replacement-class" has all the same top-level field-names 

A cop-out that let's ECN 
assert it can do anything! 

Only six mechanisms - something has gone 
wrong!  Bet there will be a seventh soon! 

Detailed and tedious and quite restricted. 
But it’s there if you find it useful. 

You want to add a new auxiliary field?  
This is for you! 



32 

(with exactly the same class for the field) as "#Old-class", but they may be in a different order, and there may be 
additional fields which will eventually be used as determinants. The semantics are simple - values are mapped 
between fields with the same name, and the syntax is even simpler - just the keyword "FIELDS": 

 
        encoding-for-old-class #Old-class ::= 
                { USE #Replacement-class 
                  MAPPING FIELDS 
                  WITH 
                    encoding-of-replacement } 

5.3.3 Mapping using #TRANSFORM encoding objects 

This syntax provides very flexible mappings from 
integers to other integers by adding 1, dividing by 2, 
and so on.  (Useful if determinants count in funny 
units, or have offsets). It also provides "transformations" (that are really encodings) of integers into bits or into 
characters, letting you later encode those bits or characters. 

The #TRANSFORM class has not been covered in this tutorial, and further discussion of this mapping 
mechanism is abandoned.  Version 2 of the tutorial may do better! Otherwise, go on an ECN course and see if 
your trainer can tell you all about mappings using #TRANSFORM objects! 

For completeness, however, here is an example from the ECN Standard. We have an #Old-class which is 
#INTEGER, containing only even number values 0, 2, 4, etc, and we want to encode these as 0, 1, 2, etc 

 
        encoding-for-old-class #INTEGER1 ::= 
                { USE #INTEGER2 
                  MAPPING TRANSFORMS 
                  { {INT-TO-INT divide:2} } 
                  WITH 
                    encoding-of-integer2 } 

It would also be possible to achieve this by MAPPING ORDERED VALUES, described in the next sub-clause. 

5.3.4 Mapping by abstract value 
ordering 

If you can order the abstract values of "#Old-class" and 
those of "#Replacement-class", even if those sets of 
values are infinite, then you can map the values between them. 

Classes with a defined ordering of values are those derived from #NUL, #BOOL, #INT (provided there is a 
lower bound), #REAL (provided it is constrained to a finite set of values), #ENUMERATED and any class that 
is constructed as an #ALTERNATIVE construction using classes with a defined ordering. 

The syntax is again very simple, just the words "ORDERED VALUES": 
 
        encoding-for-old-class #Old-class ::= 
                { USE #Replacement-class 
                  MAPPING ORDERED VALUES 
                  WITH 
                    encoding-of-replacement } 

It has been used to map a positive integer into a choice of bounded integers (which is then encoded using PER) 
to provide a Huffman-style encoding of those values. Huffman encodings are, however, better done using the last 
mapping in this section. 

Whilst very powerful, this mechanism is again mainly for advanced users who want to do somewhat unusual 
things. 

5.3.5 Mapping by distributing values 

In this case #Old-class has to be an integer category of class, and the 
#Replacement-class has to contain one or more integer category of 

Advanced stuff! This is beyond your tutor! 

**Very** flexible, can map an infinity of values 
between many different structures. Good for 
playing clever tricks with ECN! 

Similar to mapping ordered values, but 
with a little more control. 



  33 

fields. The user specifies which ranges of the original integer map into which of the integer fields in the 
#Replacement-class, which will typically be a structure using #ALTERNATIVES.  Suppose #Replacement-class 
has integer fields "field1", "field2, and "field3" (it may also have other fields that will be used as determinants). 
We can write: 

 
        encoding-for-old-class #Old-class ::= 
                { USE #Replacement-class 
                  MAPPING DISTRIBUTION 
                  0 .. 9 TO field1, 
                  10 .. 99 TO field2, 
                  REMAINDER TO field3 
                  WITH 
                    encoding-of-replacement } 

5.3.6 Mapping integer values into bits 

This is intended for the definition of Huffman encodings of integer 
values. The #Old-class has to be an integer category of class and the 
#Replacement-class has to be a bits category of class. A true Huffman 
encoding of an integer needs as input the relative frequency with which 
each integer value will occur in a series of communications. There are algorithms that can take this information 
and produce self-delimiting encodings (no length determinant needed) of each integer value which produce the 
theoretical minimum of bits-on-the-line, averaged over a sufficient number of communications. Frequently 
occurring values use a small number of bits, infrequently occurring values a larger number. A Microsoft Word 
macro that will generate Huffman encodings from percentage frequencies is available on the ECN web-site at 
http://asn1.elibel.tm.fr/ecn. Here is an example of the use of the macro. The lines between "-- End Definition" 
and "WITH ...." were generated by the macro from the frequency information. An example of the final output, 
produced in ECN syntax, is: 

 
        encoding-for-integer #INTEGER ::= 
                { USE #BITS 
                  -- ECN Huffman 
                  -- Range (-1 ..10) 
                  -- -1 is 20% 
                  -- 1 is 25% 
                  -- 0 is 15% 
                  -- (3..6) is 10% 
                  -- REST IS 2% 
                  -- End Definition 
                  -- Mappings produced by "ECN Public Domain Software for 
                  -- Huffman encodings, version 1" 
                  MAPPING TO BITS { 
                  -1 TO '11'B, 
                  ( 0 .. 1 ) TO ( '01'B..'10'B), 
                  2 TO '0000001'B, 
                  ( 3 .. 5 ) TO ( '0001'B..'0011'B), 
                  6 TO '00001'B, 
                  ( 7 .. 8 ) TO ( '0000010'B..'0000011'B), 
                  ( 9 .. 10 ) TO ( '0000000'B..'00000001'B) 
                  } 
                  WITH 
                    encoding-of-bits } 

6 How to define encoding object sets 
Encoding object sets have names beginning with a capital letter, and 
the governor for set notation is the reserved name #ENCODINGS. 
Given encoding objects "obj1", "obj2", etc we can write: 

        My-encodings #ENCODINGS ::= 
                { obj1 | obj2 | obj3 | obj4 } 

Encoding object sets can be defined and named in an EDM, but in an ELM they can only be formed in-line 
(from imported encoding objects) when applying encodings. 

You control the encoding 
completely 

You know this already. Short and 
sweet. 

http://asn1.www.elibel.tm.fr/ecn


34 

As with similar ASN.1 notation, each of the constituents used in building an encoding object set can be either an 
encoding object or an already-defined encoding object set. 

7 How to apply encodings in the ELM 
The final step - we apply an encoding object set to a generated structure 
corresponding to an ASN.1 type definition.  This may be the implicitly generated 
structure, imported from the ASN.1 module, but is more likely to be an explicitly generated structure imported 
from an EDM module. 

The corresponding ASN.1 type will typically be the (usually single) top-level type that defines all the messages 
of the application. Typically that type contains many type references (and the corresponding encoding structure 
many encoding class references), but it is not necessary (nor meaningful) to apply encodings to all these 
constituent parts.  When an encoding object set is applied it ripples down to all the remotest parts of the type 
tree, with all type references being resolved as it proceeds through the structure. Thus the one application fully 
defines the encoding of all messages.  Here is a typical ELM module: 

 
        ELM-module-my-name 
        {joint-iso-itu-t(2) To be supplied} 
        LINK-DEFINITIONS ::= 
        BEGIN 
 
        IMPORTS My-encodings FROM EDM-Encodings-module { ...... } 
                #My-Messages FROM EDM-Coloring-module { ...... }; 
 
        ENCODE #My-Messages WITH My-encodings 
               COMPLETED BY PER-BASIC-UNALIGNED 
 
        END 

The ELM is a very lazy module - all the real work is done in the EDM's, but the ELM takes all the credit! It is 
only when encodings are applied in the ELM that actual definition of the encoding for values of an ASN.1 type 
occurs. All activity in the EDM is simple defining encoding objects for particular classes in order to produce the 
encodings of the ASN.1 type that are needed. 

The ELM will typically contain precisely one "ENCODE" statement, but can contain more (and can even refer to 
all the types in a module if they represent separate messages), but there are rules that prevent the ELM from 
defining encodings twice for the same ASN.1 type. 

8 Examples of simple encoding object definition 
This part of the tutorial is incomplete in version 1. It will eventually copy 
material from the ECN Standard Annex E to illustrate and describe the 
definition of: 

– Encoding objects for classes derived from #ALTERNATIVES 
– Encoding objects for classes derived from #BITS 
– Encoding objects for classes derived from #BOOL 
– Encoding objects for classes derived from #CHARS 
– Encoding objects for classes derived from #CONCATENATION 
– Encoding objects for classes derived from #INT 
– Encoding objects for classes derived from #NUL 
– Encoding objects for classes derived from #OCTETS 
– Encoding objects for classes derived from #OPTIONAL 
– Encoding objects for classes derived from #PAD 
– Encoding objects for classes derived from #REPETITION 
– Encoding objects for classes derived from #TAG 

And there is little more 
to say here either - the 
end is nigh! 

Oh dear, more and more 
still to read! 



  35 

For the present, the reader is referred to that Annex. 

 

9 Encoding objects for commonly used encoding techniques 
It is intended that Version 2 of this Tutorial will describe in detail 
the way in which ECN can be used to support each of the following 
techniques. 

This is intended to provide a library of useful definitions, and may 
be extracted into a separate document once produced. 

The encoding techniques currently planned for inclusion are: 
– An immediately prefixed presence bit for #OPTIONAL 
– An M-bit (a “more” bit) for zero or more elements (1 before each element, zero after the last) in 

#SEQUENCE-OF. 
– An M-bit for one or more elements (each element has an M-bit before it which says whether 

another element follows) in #SEQUENCE-OF. 
– Bit length wrappers of W-bits for #SEQUENCE. 
– Bit length wrappers of W-bits for #SEQUENCE-OF. 
– Byte length count wrappers of W-bits for an aligned #SEQUENCE-OF with an unused bits 

determinant. 
– Element count wrappers of W-bits for #SEQUENCE-OF. 
– Huffman encoding of #INTEGER. 
– BCD encoding for an #INTEGER using a PER #OCTET-STRING encoding and an even/odd 

determinant. 
– Tail-end optionals terminated by the end of a #SEQUENCE with a length wrapper of W-bits. 
– Tail-end optionals terminated by end of PDU. 
– An encoding object for #TAG which produces a W-bit wide encoding without alignment. 
– An encoding object for #TAG which produces a W-byte wide encoding with alignment. 
– Differential encode/decode for #PAD parameterised by zero or one padding, and with the 

termination conditions selected from any combination of fixed, next n-bit alignment point, or end 
of PDU. 

– Two sequence-ofs with the same length 
– Encodings which use a list of pointers near the head of a sequence of elements, each pointer 

identifying the position of the start of the encoding of an element, with arbitrary padding between 
the end of one element and the start of the next. 

Examples of some of these techniques can already be found in the Examples Annex of the ECN Standard, or in 
the ETSI Case Studies. 

Suggestions for additional "useful techniques" that might be included are welcomed, and should be sent to the 
author at j.larmouth@salford.ac.uk. 

10 Further reading and guide to the ECN Standard 
The ETSI Case Studies References to be provided 

The ECN Standard - X.692 | ISO/IEC 8825-3 and ETSI ..... 

There are several ETSI Case Studies in preparation, each one 
applying ECN to a legacy protocol. The application to TETRA is the 
most advanced, and it is expected that these Case Studies will 
become available progressively from December 2000. Readers 

This is the "how-to" section - pity it 
hasn't been written yet! 

If you have got this far, you will 
probably want a rest! But if you still 
have the energy, try these as follow-up! 



36 

wishing to know about availability of these documents should subscribe to the ECN mailing list ecn@oss.com. 
(to subscribe, send an e-mail to majordomo@oss.com with "subscribe ecn your-name" in the body). 

The final authority for those wanting to make serious use of ECN or to begin implementations is the actual ECN 
Standard ITU-T X.692 and ISO/IEC 8825-3. These are still in the form of (fairly complete) drafts, and have been 
fairly widely circulated. They will in due course become ETSI documents that are freely available. 

As stated earlier, this tutorial is (as far as is possible) aligned with the functionality expected in the next version 
of the ECN Standard, due to be available mid-February 2001, and it is recommended that most readers wait for 
the availability of that document. 

The ECN Standard itself contains some fairly brief tutorial material in its clause 9, a full description of the 
Annex A parameters in clause 19, and a very extensive Examples Annex.  These are all useful follow-up reading.  
And, of course, it contains the authoritative and complete definition of the ECN syntax. 

 


	ETSI ECN Tutorial (Version 1)
	ETSI ECN Tutorial (Version 1.1)
	Questions and Answers
	History and current status of the ECN work
	Fundamental concepts
	The process of defining a legacy protocol
	How to define encoding objects
	How to define encoding object sets
	How to apply encodings in the ELM
	Examples of simple encoding object definition
	Encoding objects for commonly used encoding techniques
	Further reading and guide to the ECN Standard

