
Application of the ASN.1 specification technique to the
Bluetooth Service Discover Protocol

Prof John Larmouth
Salford University
Salford M5 4WT

England
+44 161 928 1605

j.larmouth@salford.ac.uk

Olivier Dubuisson
France Telecom R&D

DTL/MSV - 22307 Lannion
France

+33 2 96 05 38 50

Olivier.Dubuisson@francetelecom.com

Paul Thorpe
OSS Nokalva, Inc

1 Executive Drive, Suite 450
Somerset NJ 08873 USA

+1 732 302 9669

thorpe@oss.com

ABSTRACT
This paper describes the work undertaken, and evaluates the
results produced, in a project that applied ASN.1 and its newly
developed Encoding Control Notation to the Bluetooth Service
Discovery Protocol. The use of ASN.1+ECN was shown to be
fully capable of specifying the bits-on-the-line required by the
approved Bluetooth specification, and identified some areas
where the current Bluetooth specification lacks precision -
noticeably in areas concerned with "extensibility".

General Terms
Languages.

Keywords
ASN.1, Bluetooth, ECN, Protocol Specification Techniques.

1. INTRODUCTION TO ASN.1
ASN.1 is a notation for the specification of the syntax of
messages used in (binary) protocol exchanges.
It is a language-independent notation for the definition of data
structures that was first developed in the early 1980s, and widely
used as various versions up to the current 1997 version [1]. A
2002 version is in preparation.
Many tools exist to assist in the implementation of protocols
defined using ASN.1, with mappings of ASN.1 definitions to C,
C++ and Java data structures and automatic generation of
encodings.
Defining protocols using ASN.1 can in general reduce the time-
to-market for an implementation produced using ASN.1 tools, and
can also reduce the incidence of interworking problems due to
encoding-related bugs or ambiguities in the specification.

ASN.1 definition of protocols can also make it easier to use
notations such as:

• Specification and Description Language (SDL) [2] for
definition of the procedural aspects of a protocol; and

• Tree and Tabular Combined Notation (TTCN) [3] for
definition of test sequences for a protocol.

Whilst many protocols have been and are being defined using
ASN.1, there are nonetheless a significant number of protocols
where the standardisers have chosen (for whatever reason) to use
a different notation for protocol definition. Bluetooth is one of
the latter.
Hitherto, the use of ASN.1 tools by implementers and of SDL and
TTCN has been difficult if the base standard was not specified
with ASN.1. The development of the Encoding Control Notation
(ECN) addition to ASN.1 has changed that, and ASN.1 tools, and
ASN.1-based SDL and TTCN specifications can now support any
binary-based protocol (including Bluetooth).

2. THE ASN.1 ENCODING CONTROL
NOTATION
Many exercises have been undertaken in the past to provide
ASN.1 definitions for protocols defined in other ways. However,
the application of standard ASN.1 Encoding Rules inevitably
results in bits-on-the-line which are not those originally specified,
making the ASN.1 specification of little use except as a means of
clarifying the real semantic content of the messages.
The ASN.1 Encoding Control Notation (ECN) [4] allows the
specification of encodings for data-structures defined using
ASN.1 in a sufficiently flexible way that any protocol can be re-
defined using ASN.1+ECN, with no change to the specified bits-
on-the-line.
This work has several benefits.
First, it enables legacy protocols that were defined using old
notations such as pictures of bits and bytes or by tables to be re-
defined before extension into a new (and usually more complex)
version that requires a more sophisticated protocol definition
mechanism.
Second, it enables implementers of "modern" protocols (such as
Bluetooth) that chose not to use ASN.1 in their definition, to use
ASN.1 as part of their implementation strategy, defining
ASN.1+ECN (or obtaining such definitions from an ASN.1 tool
vendor), and then using ASN.1 tools for the implementation.

Bluetooth specification - standard, global

Code for
single

implementation,
including:

Data-structure

definitions

Code for
semantics of

messages

Encode/decode
routines

(The subject of
this paper)

Tool-supplied
ASN.1 + ECN
specifications

Code for
semantics of

messages

Tool-supplied
encode/decode

routines

10111000101010001010010100

Figure 1: Specifications and code needed

 XML
display

 of values

Third, it makes the ASN.1 XML Value Notation and XML
Encoding Rules [5] available, at no cost, for the display in a
browser of the protocol messages being sent or received by an
implementation. This can be a powerful debugging aid.
This paper is concerned primarily with the second of these
facilities, and describes the application of ASN.1+ECN to the
definition of the Bluetooth Service Discovery Protocol [6].
Figure 1 illustrates the specifications and code needed for (on the
right) a conventional implementation of Bluetooth, and (on the
left) implementation using an ASN.1+ECN specification and
ASN.1 tools. Only the parts that are not grayed out need to be
generated for each specific implementation. The figure also
shows the ability of ASN.1 tools to display (for debugging
purposes) sent and received messages in XML form using the
ASN.1 XML Value Notation and Encoding Rules. The main
subject of this poster-paper is the specification needed for the box
at the top of the left-hand column, a specification that could be

provided by the vendor of an ECN tool to Bluetooth
implementers.

3. THE BLUETOOTH SERVICE
DISCOVERY PROTOCOL
This protocol can reasonably be described as the heart of the
Bluetooth protocol suite. It enables any Bluetooth-enabled system
to discover the presence in the local environment of other
Bluetooth-enabled systems, either in general, of a specific type
(offering a specific service), or of a specific type with a given
name.The protocol uses a mixture of TLV-encoded types and
fixed-length fields.
One of the key features of this protocol is its open-ended nature. It
allows suppliers of Bluetooth-enabled equipment to define new
types of service, and the parameters associated with that service.
Encoding of such information is always of a Type-Length-Value
(TLV) form, so a receiver who does not understand some

particular service type and parameters can easily skip such
material and ignore that service.
For parameters defined by equipment suppliers, the types (and
hence encoding) of those parameters are defined using a
combination of a small number of construction mechanisms and a
small number of primitive types. This maps neatly into ASN.1
definition, once ASN.1 types and constructors (that correspond to
the Bluetooth "Data Elements") and their encodings have been
defined.
Part of the challenge in producing an ASN.1+ECN specification
was to provide full support for the addition of such new types by
an equipment supplier, using normal ASN.1 notation without the
need for additional ECN specification. This challenge was met by
use of the ASN.1 constrained Open Type and an object class
definition, with rules on what ASN.1 types and constructors can
be used by equipment suppliers in the definition of their own
types.

4. THE ABSTRACT SYNTAX CONCEPT
Most encodings of protocols have fields that carry the application
semantics, together with other fields that provide length
delimitation, or identification of alternative selection, or of the
presence or absence of optional elements of the encoding. These
are described in the ECN work as length, choice, and optionality
determinants. (There are other determinants, related to the
presence of version 2 material within what is otherwise a version
1 encoding, but that goes beyond the scope of this paper.)
There are a variety of mechanisms used in practice for length,
choice, and optionality determination. For example, for length
determination we can have an explicit length field counting in
bits, or one counting in octets with a supplementary count of
unused bits, or we can have a special terminator (for example, a
null-terminated character string). TLV-style encodings frequently
use the "T" part as a means of choice and optionality
determination, but explicit encoding of choice indexes or of
presence bits also occurs.
ECN supports the specification of all the above mechanisms - and
several others - and proved to have sufficient power in this area to
cover all the mechanisms used in Bluetooth.
It is often possible to write an ASN.1 type definition for a
protocol in which every field, including all determinants, is
included in the ASN.1 specification. This is, however, counter to
the ASN.1 philosophy, and removes the two main advantages of a
normal ASN.1 specification:

• Simplicity through information hiding - encoding
features such as determinants are not visible in the
ASN.1 specification.

• Automatic handling (insertion on encoding and use in
decoding) of determinants is possible by common
subroutines without any application code (and hence
without application-generated bugs).

The principle of a good ASN.1 specification for a non-ASN.1
protocol is that only those fields that carry application semantics
should be included in the ASN.1 specification. Fields that are
used solely to support encoding and decoding are called auxiliary
fields and should not be present in the ASN.1. This means that
when a C or C++ or Java API is generated from the ASN.1, the

API contains (and the application code is concerned with) only
the actual values that carry application semantics. It is sometimes
quite challenging to correctly identify which fields are auxiliary
fields and which fields have meaning to the application, but
usually it is quite obvious.

5. BLUETOOTH DATA ELEMENTS
The Bluetooth is a byte-aligned protocol (almost all fields are a
multiple of eight bits), which in many parts is similar to (but of
course in detail different from) the ASN.1 Basic Encoding Rules
[7] in its encodings.
In particular, a type field and a length field followed by the actual
value is used for what Bluetooth calls "Data Elements". The type
field carries what in ASN.1 we would describe as the "tag" of the
element. This structure is used both for primitive types and for
construction mechanisms. Unlike ASN.1, however, Bluetooth
does not allow the user to over-ride the tags assigned to these
primitive types, so tagging is not visible to the user, nor is it used
in the ASN.1 part of the ASN.1+ECN specification for Bluetooth.
Bluetooth declares the following primitive types (similar to, but
different from, the primitive types in ASN.1), each with its own
tag:

• Nil - the null type.

• Unsigned integer - 5 lengths (1, 2, 4, 8, and 16 bytes)
each with a distinct tag.

• Signed two's-complement integer - 5 lengths again.

• Boolean

• A UUID - 3 lengths (2, 4, and 16 bytes)

• A text string - uses a length of length encoding, with the
length restricted to one, two, or 4 octets.

• A URL - similar to a text string.
Although not described as Data Elements, Bluetooth also has
primitive types for:

• An attribute

• An attribute range

• These types (together with user-defined types) can be
used to form more complex user-defined types using the
following construction mechanisms:

• Alternative - ASN.1 CHOICE constructions

• Data Element Sequences - ASN.1 SEQUENCE OF
constructions

• Data Element Alternatives - also ASN.1 SEQUENCE OF
constructions, but with a different tag, and with
different application semantics (each element of the
sequence represents an alternative that the receiver can
select from)

• Simple concatenation in a TLV wrapper – the ASN.1
SEQUENCE construction.

A decision was taken to use the ASN.1 SET OF construction to
represent the Data Element Alternatives.
Producing ASN.1 types and constructors for all the Bluetooth
primitive types and construction mechanisms, with ECN

specification of the required encodings, was the major part of the
work undertaken.
The full specification of the Bluetooth SDP is available from the
authors.

6. PROBLEMS ENCOUNTERED

6.1 The building blocks for defining
attributes
It was necessary to derive from actual specifications of attributes
the primitive types that Bluetooth designers envisaged. Issues
such as "can you just say TEXT DATA ELEMENT or do you
have to say SHORT TEXT DATA ELEMENT?" had to be
resolved by inspection of actual definitions. In fact, it became
apparent that the answer in the UNSIGNED INTEGER case was
different from that for the TEXT case.

6.2 Canonical representation
There are also instances where 32-bit fields (as the V part of a
TLV) are used as pairs of 16 bit fields specifying ranges. These
were identified in the ASN.1+ECN as additional basic Data
Elements.

6.3 Construction mechanisms involving
repetition of an element
It was fortunate that Bluetooth had only two different semantics
(and encodings) for a repetition of elements, so that mapping
these to SEQUENCE OF and to SET OF was possible. If there
had been three semantically different forms of repeated element,
then it would have been necessary for equipment suppliers to
provide additional ECN text to supplement their definition of new
attributes in ASN.1, in order to "color" the different forms of
repetition. Fortunately, this was not necessary, and all
equipment-supplier-specific text is simply the ASN.1 definition of
the new attributes they wish to define. The supplier-independent
ECN suffices to encode all types that can be defined with the
Bluetooth primitive Data Elements and construction mechanisms.

6.4 The meaning of "reserved"
 There was some difficulty in determining what "extensions" were
envisaged for Bluetooth version 2, and what extensions
equipment suppliers could make in their version 1 specifications.
It was assumed that equipment suppliers providing attribute
definitions were not permitted to use Data Elements with the
reserved Type Descriptor Values.
It was further assumed that if an id was assigned in version 1 to an
attribute, it would not be extended (changed) in version 2, but
rather that a new attribute would be defined.
Both these provisions are necessary if good inter-working
between version 1 and version 2 systems is to be possible.
However, the current specification is not very precise on what a
decoder should do when it receives an attribute id that is
"unknown" (an attribute defined by some other equipment
manufacturer) - or if this can in fact happen. The TLV structures
used for Data Elements and constructors mean that skipping to the

end of such material is possible (provided reserved Type
Descriptor Values are not present), and this seems the most likely
intention.

6.5 Character set matters
The handling of different character sets and languages in
Bluetooth does not map easily into ASN.1, and the length of such
strings is always an octet count. Such strings were mapped into
ASN.1 OCTET STRING types, leaving it to the application to
resolve the fairly complex rules on character encoding and
language determination in Bluetooth.

7. CONCLUSION
This work demonstrated that, despite some difficulties (mainly
arising from occasional lack of precise text in the base
specification), it was possible to produce a quite clean and neat
ASN.1 and ECN specification for the Bluetooth Service
Discovery Protocol.
It was particularly pleasing that the facilities for constrained open
types in ASN.1, and for the use of ECN to define the encoding
procedures for constructors as well as the encoding of primitive
fields, was both necessary and sufficient to handle the Bluetooth
provision for equipment-supplier addition of attributes.
Tools for ASN.1+ECN are still under development, but it is
confidently expected that the specification that has been produced
will (when fed into these tools) generate the same bits-on-the-line
as are required by the primary Bluetooth specification.

8. REFERENCES
[1] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-

1:1998, Information technology – Abstract Syntax Notation
One (ASN.1): Specification of basic notation

[2] ITU-T Recommendation Z.100 (1999), Specification and
Description Language (SDL).

[3] ITU-T Recommendation X.292 (1998) | ISO/IEC 9646-3:
1999, Data Communication Networks – OSI conformance
testing methodology and framework: Tree and Tabular
Combined Notation (TTCN)

[4] ITU-T Recommendation X.692 (2001) | ISO/IEC 8825-3
Information technology – ASN.1 encoding rules: Encoding
Control Notation (ECN). See http://www.itu.int/itu-
t/asn1/ecn

[5] ITU-T Recommendation X.693 (2001) | ISO/IEC 8825-4
Information technology – ASN.1 encoding rules: XML
Encoding Rules (XER). See http://www.itu.int/itu-t/asn1
/xml

[6] Specification of the Bluetooth system, Volume 1 v1.0B Dec
1999: p324 – 384 Service Discovery Protocol (SDP)
http://www.bluetooth.com/developer/specification

[7] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-
1:1998, Information technology – Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1).

http://www.itu.int/itu-t/asn1 /ecn
http://www.itu.int/itu-t/asn1 /ecn
http://www.itu.int/itu-t/asn1 /xml
http://www.itu.int/itu-t/asn1 /xml
http://www.bluetooth.com/developer/specification

	Proceedings Template - WORD
	INTRODUCTION TO ASN.1
	THE ASN.1 ENCODING CONTROL NOTATION
	THE BLUETOOTH SERVICE DISCOVERY PROTOCOL
	THE ABSTRACT SYNTAX CONCEPT
	BLUETOOTH DATA ELEMENTS
	PROBLEMS ENCOUNTERED
	The building blocks for defining attributes
	Canonical representation
	Construction mechanisms involving repetition of an element
	The meaning of "reserved"
	Character set matters

	CONCLUSION
	REFERENCES

