TUKALEIDOSCOPE NEW DELHI2024

Innovation and digital transformation for a sustainable world

21-23 October 2024 New Delhi, India

Modeling Internet Use in the Global Development Context: Preliminary Findings and Future Directions

Katelyn Lynch Arizona State University

PhD Candidate Innovation in Global Development

Research in Brief

- Question
 - How do various markers of choice influence internet use?
- Justification
 - 2.6 billion offline [1]
 - Internet can expand capabilities [2]
 - Inquiry beyond economic factors needed [3]
- Method
 - Use regression analysis to identify significant relationships between internet use and array of factors identified using CA lens [4]
- Data Sources
 - Global data banks including UNESCO, UN, WHO, and World Bank
- Value
 - Results could offer insights to policymakers and development practitioners in the ICT4D space and beyond

[2] I. Oosterlaken, Technology and Human Development. Routledge, 2015.

^[1] International Telecommunication Union, "Measuring digital development: Facts and Figures 2023," 2023. [Online].

^[3] K. Salemink, D. Strijker, and G. Bosworth, "Rural development in the digital age: A systematic literature review on unequal ICT

availability, adoption, and use in rural areas," J. Rural Stud., vol. 54, pp. 360-371, 2017.

^[4] A. Sen, Development as Freedom. New York, NY: Anchor Books, 1999.

15TH ITU ACADEMIC CONFERENCE **Background: ICT4D**

- ICT4D Definition and Scope [5]
 - Information and Communication Technologies for Development (ICT4D)
 - Employs ICT as tools and goals for development
- Role of Digital Integration [9]
 - The "digital nervous system" of the world necessitates ICT in all development projects
 - Blurring distinctions between "developed" and "developing" in digital world
- Critiques of ICT4D [6]-[8]
 - Challenges in measuring ICT-based project outcomes
 - Debate over the effectiveness and necessity of ICT incorporation
- **Reframing ICT4D** [10]-[12]
 - Views ICT4D as expanding real freedoms, not achieving prescribed outcomes
 - Argues for conceptualizing ICT4D as expanding real freedoms rather than achieving prescribed outcomes
 - Importance of unintended outcomes in evaluating the value of ICT4D projects
- Expanding Access as Instrumental Freedom [2], [13], [14]
 - Access to ICT demonstrably critical to enhancing overall capabilities and freedoms, such as political, economic, and social freedoms
- [5] G. Walsham, ICT4D 2018: New Themes for an Old Field, 2018.
- [6] R. Harris, Digital Interactions in Developing Countries, 2015.
- [7] R. Heeks and P. Wall, ICT4D 2018: Major Works, 2018.
- [8] A. Lin et al., Information Systems Journal, 2015.
- [9] R. Heeks, The Platformization of Development, 2019.

- [10] M. Hatakka and R. De', The Capability Approach in ICT4D, 2011.
- [11] M. Hoque, Real Freedoms and ICT: Evaluating the Role of Technology in Development, 2020.
- [12] D. Kleine, ICT and Development: Enhancing its Role, 2010.
- [13] G. Ranis and W. Zhao, Wellbeing and Growth: Towards a New Paradigm in ICT4D, 2013.
- [14] A. Fernandez-Baldor et al., ICT4D: New Avenues for Empowerment, 2014.

15TH ITU ACADEMIC CONFERENCE Background: Capability Approach & Equitable Access

- Capability Approach (CA) [4]
 - Reframes development as tool to expand freedoms such as governance, education, healthcare, and social safety
 - "Functionings" (achievable states of being)
 - "Capabilities" (ability to achieve these states)
 - "Choice" (freedom to tap into capabilities)
 - "Conversion factors" (personal, social, environmental conditions affecting choice)
- CA for ICT4D [15]-[21]
 - Higher access to ICTs correlates with better outcomes in critical areas of human development (health, education, employment, wellbeing, civic engagement, etc.)
 - Encourages assessing ICT adoption by its impact on expanding people's freedoms, rather than mere availability 0
 - Digital literacy critial to enriching use

Can Critical Theory Contribute to Sen's Capability Approach?" Ethics and Information 2021.	
Technology, 2011. [19] I. Graetz et al., "Educational Disparities in the Digital Age," Educ	ational Re
[16] G. Walsham, "Understanding ICT and Development in the Context of Late 2016.	
Development," Information Technology for Development, 2001. [20] K. Hampton et al., "Employment Opportunities and the Internet,"	Journal c
[17] K. Salemink et al., "ICT Inequities: A Systematic Review," Journal of Information Economics, 2021.	
Technology, 2015. [21] M. Handley et al., "Wellbeing and Internet Access," Social Indica	itors Rese

ics Journal,

esearcher,

of Labor

15TH ITU ACADEMIC CONFERENCE Background: Capability Approach & Equitable Access

- Capability Approach (CA) [4]
- Reframes development as tool to expand free long such as governance, education, healthcare, and social safety
 IO IIIUSTRATE the
- capability approach in the context of ICT4D:

- accessing information through the internet (functioning)
- CA for ICT4D [15]-[21] is enabled by digital literacy skills (capability)

and the **freedom** to use search engines without government censorship (choice), but is dependent on having reliable internet speeds (conversion factor).

Can Critical Theory Contribute to Sen's Capability Approach?" Ethics and Information 2021.	
Technology, 2011. [19] I. Graetz et al., "Educational Disparities in the Digital Age," Education	ional Re
[16] G. Walsham, "Understanding ICT and Development in the Context of Late 2016.	
Development," Information Technology for Development, 2001. [20] K. Hampton et al., "Employment Opportunities and the Internet," Jou	ournal c
[17] K. Salemink et al., "ICT Inequities: A Systematic Review," Journal of Information Economics, 2021.	
Technology, 2015. [21] M. Handley et al., "Wellbeing and Internet Access," Social Indicator:	rs Rese

ics Journal.

esearcher,

of Labor

Research Question

How do various markers of choice influence internet use?

- What is the relationship between internet use and **equality**?
- What is the relationship between internet use and **educational attainment**?
- What is the relationship between internet use and **economic conditions**?
- What is the relationship between internet use and markers of **health**?
- What is the relationship between internet use and **governance**?
- What combination of markers offers the most explanatory power for variation in internet use globally?

Data Selection

- Dependent Variable:
 - Individuals using the Internet (% of population) "Internet Use"
 - Adheres to CA emphasis on individual-level analysis
- Independent Variables:
 - Developed "markers of choice" from CA literature
 - Markers: Equality, Education, Economics, Health, Governance
 - Represented by two proxy variables based on availability and alignment
- From Global Data Banks
 - UNESCO, UN Population Division, Human Development Index, ITU, WHO, World Bank Group
 - Latest data ranging from **2020 to 2023** for **104 countries**

Markers of Choice	Proxy Variable	D
	"Female Schooling" School enrollment, secondary, female (% gross)	UNESCO Institute for
Equality	"Urban Population" Urban population (% of total population)	United Nations Popul
	"Secondary Education" School enrollment, secondary (% gross)	UNESCO Institute for
Education	"Mean Years Schooling" Mean years of schooling (years)	HDI, United Nations H Programme (2022)
Economics	"ICT Price Basket" ICT price basket (2017 PPP \$)	ITU World Telecomm Database (2023)
	"GNI (PPP)" Gross national income per capita (2017 PPP \$)	HDI, United Nations H Programme (2022)
Lleelth	"Life Expectancy" Life expectancy at birth (years)	HDI, United Nations H Programme (2022)
Health	"Maternal Mortality" Maternal mortality ratio (modeled estimate, per 100,000 live births)	WHO, Trends in Mate (2020)
Governance	"Political Stability" Political Stability and Absence of Violence/Terrorism (percentile rank)	World Bank Policy Re 5430, The Worldwide
	"Regulatory Quality" Regulatory Quality (percentile rank)	World Bank Policy Re 5430, The Worldwide

	Data Source	
female (% gross)	UNESCO Institute for Statistics (2021)	
opulation)	United Nations Population Division (2022)	
ary (% gross)	UNESCO Institute for Statistics (2021)	
vears)	HDI, United Nations Human Development Programme (2022)	
	ITU World Telecommunication/ICT Indicators Database (2023)	
7 PPP \$)	HDI, United Nations Human Development Programme (2022)	
	HDI, United Nations Human Development Programme (2022)	
eled estimate, per 100,000 live	WHO, Trends in Maternal Mortality 2000 to 2020 (2020)	
f Violence/Terrorism (percentile	World Bank Policy Research Working Paper No. 5430, The Worldwide Governance Indicators (2021)	
rank)	World Bank Policy Research Working Paper No. 5430, The Worldwide Governance Indicators (2022)	

Analytical Protocol

- Step 1
 - Simple regression to identify individual relationships
- Step 2
 - Multiple regression to investigate multifaceted relationships (education & economics)
- Step 3
 - AIC/BIC stepwise regression for best model fit (AIC best fit)

Simple Regression

- All variables significant (p < 0.05)
- Education variables have highest R-squared values
- Each education variable explains over 60% of the variation in internet use (R-squared ~ 0.63-0.68)
- Proxy variable for cost of ICTs explains about 4% of the variation in use

Variable	P-Value	R-squared
Mean Years Schooling	< 2e-16***	0.6831
Secondary Education	< 2e-16***	0.652
Female Schooling	< 2e-16***	0.6257
Life Expectancy	< 2e-16***	0.5998
Urban Population	0.0326*	0.5367
Regulatory Quality	< 2e-16***	0.5277
GNI (PPP)	< 2e-16***	0.5024
Maternal Mortality	1.33e-14***	0.4426
Political Stability	1.86e-12***	0.3866
ICT Price Basket	< 2e-16***	0.044

Internet Use and ICT Price Basket

Multiple Regression Model 1 Most Significant Markers

- Model explains about 76% variation in internet use
- Education variables remain the most powerful predictors
- Economic variables (GNI) show weaker significance
- Political Stability and Regulatory Quality are less predictive compared to education

Variable	
Female Schooling	
Mean Years Schooling	
GNI (PPP)	
Life Expectancy	
Regulatory Quality	

Multiple R-squared: 0.7651, Adjusted R-squared: 0.7531

Coefficient (Est.)	Standard Error	P-Value
0.2179	0.06556	0.00125**
2.830	0.5958	6.95e-06***
0.00003117	0.0001031	0.76301
0.4445	0.3002	0.14187
0.06046	0.08025	0.45301

Multiple Regression Model 2 Education Markers

- Model explains about 75% variation in internet use
- Education markers strongly predict internet use
- Both Mean Years of Schooling and Secondary

Education remain highly significant

Variable	Coefficient (Est.)	Standard Error	P-Value
Mean Years Schooling	3.41021	0.53446	5.39e-09***
Secondary Education	0.33002	0.06233	6.97e-07***

Multiple R-squared: 0.7519, Adjusted R-squared: 0.747

Multiple Regression Model 3 Economic Markers

- Model explains about 52% variation in internet use
- GNI (PPP) is highly significant (p < 2e-16), but its impact is smaller compared to educational variables in other models
- ICT Price Basket shows a weaker, yet still significant negative relationship (p = 0.0188), suggesting that higher ICT prices reduce internet usage, but to a lesser degree than expected

Variable	
GNI (PPP)	
ICT Price Basket	

Multiple R-squared: 0.529, Adjusted R-squared: 0.5197

Coefficient (Est.)	Standard Error	P-Value
6.959e-04	6.823e-05	<2e-16***
-1.540e-01 6.451e-02		0.0188*

Multiple Regression Model 4 AIC-Optimized Model

- Highest explanatory power; accounting for 83.08% of variation in use
- Urban Population and Mean Years of Schooling are highly significant and contribute most to explaining internet use
- ICT Price Basket shows a weaker negative relationship, indicating a small but notable effect of internet service costs on usage

Variable	Coefficient (Est.)	Standard Error	P-Value
(Intercept)	11.53860	4.09683	0.005872**
Urban Population	0.33123	0.05861	1.56e-07***
Secondary Education	0.16804	0.05769	0.004439**
Mean Years Schooling	2.24388	0.48164	1.00e-05***
ICT Price Basket	-0.08804	0.04283	0.042503*
Political Stability	0.16606	0.04202	0.000147***

AIC: 755.4827, Multiple R-squared: 0.8308, Adjusted R-squared: 0.8222

AIC-Optimized Model: Actual vs. Predicted Internet Use

Implications

Digital Skills > Cutting Costs

Educational attainment, especially mean years of schooling, has a greater impact on internet use than income or affordability. Focus should shift to improving education and digital literacy to expand access.

Holistic ICT4D

A comprehensive approach to internet access is essential, incorporating educational, economic, and governance variables. The findings suggest that political stability plays a crucial role in infrastructure deployment and effective internet use.

Capability Approach Lens

Expanding freedoms such as education or political stability contributes to broader development goals. The capability approach offers a robust framework for understanding how freedoms interact to enhance internet access and, by extension, development.

Future Directions

Digital Literacy Data

Proxies for *digital* literacy are difficult to find at scale. OECD countries have already started collecting such data, which could be leveraged to understand how digital skills influence internet use and development outcomes.

Longitudinal Data

Longitudinal studies are needed to track changes in internet use over time. Analyzing pre- and post-COVID data would offer insights into how access and usage evolved under pressure and point to successful programs and policies for expanding enriching access.

Machine Learning Models

Machine learning models can provide a more nuanced understanding of internet use patterns, potentially with predictive power for national "tipping points" for equitable and enriching access.

hank you.

Katelyn Lynch Arizona State University, USA

kalynch4@asu.edu +1 (623) 297-6501

"...it is not the technology in itself that is enabling; it is the features within the technology and the **use of them**."

- Mathias Hatakka & Rahul De'

