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ABSTRACT 

Smart home automation systems require convenient and 

efficient user interface to control home appliances. Gesture 

recognition-based solutions offer flexibility to the users and 

play a crucial role in advancing human-computer 

interaction and immersive computing environments. This 

work proposes a novel solution leveraging deep learning 

techniques with attention mechanisms including self-

attention tailored for processing 3D tensors derived from the 

gesture images. A set of hand gestures is defined, and the 

system is trained and optimized to meet the real time 

requirements in controlling devices. To improve the 

accuracy, the model is parallelly trained with dynamic 

learning to adaptively fuse with the classification module. 

The proposed modular architecture is implemented using 

Raspberry Pi with IoT devices for a typical home 

environment. The test result achieves gesture classification 

accuracy of 98.24% and latency of about 0.2 seconds in real 

time control. The working model highlights a practical 

solution under ITU-T Recommendation J.1611 which deals 

with the functional requirements of a smart home and 

gateway. 

Keywords – Gesture recognition, Smart Home 

Automation, Internet of Things, Attention mechanism 

1. INTRODUCTION 

Smart homes blend IoT devices and automation for seamless 

living. Gestural control represents an intuitive interface, 

enabling hands-free operation of devices and services within 

the smart home environment. By interpreting hand 

movements, gesture recognition systems trigger the 

operations of appliances. Moreover, IoT technology 

facilitates seamless communication among devices, creating 

a cohesive ecosystem where gestures drive home automation.  

Gesture recognition offers a compelling solution for 

controlling devices in smart homes due to its natural and 

intuitive interface. Unlike traditional methods such as voice 

or remotes, gesture control allows users to interact with their 

environment using natural hand movements, eliminating the 

need for physical touch or voice commands. Additionally, 

gesture recognition provides a discreet and non-intrusive 

convenient way to interact with devices, even in noisy 

environments. The preferences of gesture-based automation 

over voice-based techniques results from the technical as 

well as user convenience in controlling home appliances. 

However, the solution needs to cater to different functional 

requirements widely used by everyone irrespective of their 

abilities and disabilities. Overall, the system design goal 

orients to enhance the user experience in smart homes by 

offering a user-friendly, customizable, and versatile method 

of device control. 

Existing state-of-art systems like Smartify [1] present home 

automation by accessing devices via mobile phones and 

voice capturing technologies. However, voice command- 

based systems may struggle to distinguish commands 

accurately amidst background noise / music, leading to errors 

or misinterpretations. The proposed gesture recognition 

system focuses solely on hand movements, eliminating the 

influence of ambient sounds. This ensures precise and 

reliable control of appliances, even in noisy environments. 

Other state-of-art systems like the Fibaro [2], primarily 

utilizes a single gesture called swipe to control devices. 

However, this necessitates the placement of multiple 

hardware units across various locations within the same 

room for comprehensive device control. In contrast, our 

proposed solution extends beyond single gestures, offering a 

diverse range of gestures for intuitive device management. 

Crucially, it eliminates the need for several handheld 

hardware units by enabling the control of multiple devices 

from a single location. This enhances user experience and 

convenience, streamlining smart home interactions without 

compromising functionality or accessibility.  

The conventional approaches to gesture classification often 

rely on 2D images, limiting their ability to capture the depth 

and spatial dynamics inherent in human gestures. This 

limitation underscores the need for a more sophisticated 

approach, prompting the exploration of 3D tensor 

representations derived from images. The existing research 

works [3-5] on gesture recognition utilizes deep learning 

models with Convolutional Neural Networks. The proposed 

model uses a deep learning model with attention mechanism 

and transfer learning model with dynamic learning rate 



 

which improves the accuracy and reduces latency to a greater 

extent. 

The ITU-T Recommendation J.1612 [6] outlines technical 

specifications for efficient smart home device management 

within IoT ecosystems. The protocols and standards for 

device discovery, configuration, and maintenance ensure 

seamless integration and interoperability. Apart from the 

security measures, the system development needs to address 

scalability and adaptability, allowing for the integration of 

new devices and services over time. A standardized 

framework for smart home device management promotes 

efficiency, reliability, and security in IoT-driven home 

automation environments. The proposed work conforms to 

the ITU-T Recommendations J1611 [7] and J1612 [6], while 

taking device management and IoT into consideration. 

Further, in a standardized system development approach, the 

gateway hardware with a driver and operating system serves 

as a basic software platform to manage all hardware 

resources. In proposed solution, a machine learning based 

method deployed on minicomputer like Raspberry Pi 

supporting IoT devices facilitates understanding and 

execution end user’s command in real-time. 

The proposed work introduces a novel solution by 

employing a dedicated CNN model with self and other 

attention mechanisms, specifically tailored for processing 

3D tensors derived from the images. Beyond the core 

classification challenge, the solution addresses additional 

complexities associated with real-time gesture recognition 

devices. Integrating the entire pipeline, from real-time image 

capture to 3D tensor generation and classification, requires 

careful consideration of computational efficiency and system 

responsiveness. The inherent complexity of human gestures 

information [8], allowing for precise 3D spatial structure 

capture and accurate regression of hand poses, poses a 

challenge to conventional image-based classification 

systems. Moreover, issues such as lighting conditions, 

background noise, and varying user positions [9] add to the 

work’s intricacy. The system development using existing 

machine learning model like transfer learning model ResNet 

with a dynamic learning rate tries to enhance the accuracy 

and robustness of gesture recognition systems, enabling 

seamless and natural interactions between end users and IoT 

enabled devices. 

2. PROPOSED WORK 

The proposed work entails a comprehensive approach to 

hand gesture recognition for smart home appliance control 

as shown in Figure 1. Initially, the camera feed undergoes 

preprocessing to enhance the quality of the frames extracted 

for analysis. This preprocessing step includes noise 

reduction, image normalization, and potential background 

subtraction to isolate the hand region, crucial for gesture 

recognition. Following preprocessing, the region of interest, 

typically the hand palm, is segmented from the background. 

This segmentation step is pivotal for focusing the analysis on 

relevant features for gesture classification. By isolating the 

hand region, the subsequent models concentrate on 

discerning the nuances of hand movements with greater 

accuracy. The segmented hand palm region is then passed 

through two distinct modules for gesture classification. The 

first module employs an attention-based CNN model, which 

dynamically focuses on salient features within the hand 

region. This attention mechanism enhances the model's 

ability to capture subtle variations in hand gestures, 

improving classification performance. 

In the development of our attention mechanism, the Self-

Attention Input (SAI) layer plays a crucial role by 

decomposing the feature representations into Value, Key, 

and Query components, operating in the format of (batch size, 

channel number, height, width). This layer employs batch 

matrix multiplication to compute attention scores, which 

enables the model to selectively focus on relevant spatial-

temporal features. The attention-driven approach allows for 

more nuanced understanding by emphasizing key features 

within the spatial-temporal context of the hand gestures, thus 

improving the accuracy of gesture recognition. 

Following the attention score computation, the system delves 

into meticulous refinement processes. Attention UV (Att UV) 

and Attention Others (Att Others) strategically process UV 

and other points extracted from the Self-Attention Output 

(SAO) layer, ensuring that the system homes in on critical 

spatial-temporal features. This attention-driven refinement is 

pivotal in preparing the features for subsequent stages, 

facilitating a more precise and context-aware understanding 

of gestures. It establishes a robust foundation for the feature 

pooling stage, ensuring that the system captures and 

processes intricate details essential for classification module. 

The hand region of interest is simultaneously processed by a 

transfer learning model with dynamic learning rate. This 

model adjusts its learning rate dynamically based on the 

characteristics of the input data, optimizing the training 

process for improved performance. By incorporating 

dynamic learning rate mechanisms, the model effectively 

adapt to variations in gesture dynamics and environmental 

conditions. Unlike traditional approaches that extract 

positional parameters before inputting them into learning 

models, the proposed system directly utilizes the image data. 

This approach offers several advantages, including 

simplifying the preprocessing stage and reducing 

computational complexity. By feeding image data into the 

learning model, the system preserves the spatial information 

inherent in gestures, allowing for more accurate 

classification. 

Finally, the results from both the models (attention and 

transfer learning) are fused using a class probability fusion 

technique. This fusion process intelligently combines the 

outputs from the attention-based CNN model and 

dynamically learning transfer learning model to produce a 

more robust classification outcome. The merging of 

predictions from two parallel channels stands out as a critical 

component in the proposed gesture recognition process. 

After localizing the gestures, one channel processes the 

image data directly, while the other extracts positional 



 

parameters and employs a CNN neural network for 

classification. The predictions from these channels 

integrated using a fusion mechanism allows the system to 

combine the insights gained from both approaches. Upon 

successful gesture classification, the system triggers 

corresponding operations of home appliances via a relay 

connected to a Raspberry Pi, thereby controlling their 

functions through hand gestures. 

The algorithm for tensor extraction takes the frames of video 

as input and provides 16 3D tensors as output. 

Input: ICVL Hand Gesture Dataset with depth images 

Output: Sixteen 3D tensor points 

1. Begin 

2. Load the ICVL Hand Gesture Dataset. 

3. Apply median filtering as a part of data preprocessing. 

4. Ensure uniform sequence lengths through padding or 

truncation 

5. Apply 2D attention along with self-attention to the model 

to get the feature tensors. 

6. Train the model with train dataset samples.  

7. Finetune the model with error rate and loss in extracting 

the feature tensors 

8. End 

The algorithm for gesture classification takes the tensors as 

input and applies a CNN model for classifying gestures. In 

addition, transfer learning model is trained with dynamic 

learning rate and a probabilistic fusion is done to identify the 

gesture class. 

Input: Sixteen 3D tensors 

Output: Gesture predicted 

1. Begin 

2. Initialize a Sequential Model. 

3. Add convolutional and pooling layers to model: 

3.1: Conv3D layer with parameters (filters=f, kernel_size=k,  

       padding=p):  

       Perform convolution: H_i = activation (Conv(H_{i-1};  

       f, k, p)) where H_0 = H. 

3.2: For each MaxPooling 3D layer with parameters 

       (pool_size=s, padding=p): Apply pooling: H_i =  

       MaxPool(H_{i-1}; s, p).  

3.3: Apply the Conv3D layer and MaxPooling3D layer twice  

       iteratively. 

4: Add flatten layer to model 

4.1: Flatten the output tensor H_final from the last Conv3D 

or MaxPooling3D layer into a 1D tensor. 

5: Add dense layers to model 

5.1: For each Dense layer with units u and activation a: 

Compute dense output: P(i)= a(Dense(H_{i-1}; u)) where 

H_{i-1} = H_final 

6: Applying Resnet with dynamic learning rate to provide 

output: P(j) 

7. Add the output layer to model and compute the class 

 

                       Figure 1 - Workflow 
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3. IMPLEMENTATION WITH EXPERIMENTAL 

DETAILS 

3.1 Dataset and preprocessing 

The ICVL Hand Gesture Dataset, comprising depth images 

from Intel, with 22069 training frames and 1600 testing 

frames, focusing on 16 hand joints, was used in training / 

testing. Another dataset called Hand Gesture Recognition 

Dataset [10] containing total 24000 images of 20 different 

gestures was employed. For training purpose, there are 900 

images in each directory and for testing purpose there are 300 

images in each directory.  Table 1 shows sample images from 

the dataset. 

Table 1 – Dataset Sample Images  

 

In the preprocessing stage for gestures, the first step involves 

resizing the input images to a fixed size. This standardization 

ensures uniformity in the input data fed into the model, 

reducing computational complexity and memory 

requirements during both training and inference phases. 

Following this, normalization techniques are applied to scale 

the pixel values of the images to a standardized range, 

typically [0, 1]. This normalization stabilizes the training 

process and aids convergence by ensuring that the input data 

has a consistent scale, facilitating effective learning by the 

model. Next, noise reduction techniques are applied to 

mitigate the impact of noise and artifacts present in the input 

images. Median filter method is used to smooth out 

irregularities and enhance image clarity. In a typical home 

environment, noise reduction helps in improving the quality 

of the input data, making it easier for the model to extract 

relevant features and patterns associated with different hand 

gestures.  

Finally, data augmentation techniques are applied to increase 

the diversity and robustness of the training dataset. 

Augmentation methods such as rotation, scaling, translation, 

and flipping introduce variations to the training data, 

enabling the model to generalize better to unseen variations 

in hand gestures and environmental conditions. Additionally, 

cropping the Region of Interest (ROI), such as the hand palm, 

from the input images helps in focusing the model's attention 

on the relevant area for gesture classification. By 

sequentially applying these preprocessing methods, the input 

images are effectively prepared for feature extraction and 

classification by the corresponding modules of the gesture 

recognition system. 

3.2 Attention based CNN model 

The model configuration parameters, including learning rate, 

batch size, and epochs, were established. The data was 

organized into separate training and testing sets. To ensure 

uniform sequence lengths, padding or truncation methods 

were implemented. Following this, a 3D attention-based 

CNN model is applied to extract the feature tensors. After 

the 3D attention-based CNN model processed the data, it 

produced a set of 16 3D vectors that showed how the hand 

was positioned in space. These contained information about 

where each part of the hand was, like the fingers and the 

center of the palm, and how they were moving. 

The array of 3D vectors served as the foundational input for 

the subsequent model, which was specifically designed to 

discern and classify the intricate hand gestures. By delving 

into the minute variations and spatial dynamics encoded 

within these vectors, the model was able to discern complex 

patterns and correlations unique to each gesture. It 

comprehensively analyzed the interrelation between 

different joints and their spatial orientations, allowing for the 

accurate identification and classification of diverse hand 

gestures. With its robust analytical framework, the model 

effectively discerned the subtle differentiations between 

gestures, considering the relative positioning, movement 

trajectories, and spatial interactions between the hand joints.  

At the core of the enhanced architecture lies an intricate 

feature extraction layer with attention mechanism, 

seamlessly integrating Convolutional 2D, Batch 

Normalization, ReLU, Residual, and MaxPooling 2D 

operations. This amalgamation is meticulously crafted to 

capture nuanced spatial-temporal patterns, providing a 

robust foundation for subsequent processing. This advanced 

layer synergistically leverages the power of Convolutional 

2D operations to detect hierarchical features, Batch 

Normalization for stabilizing and accelerating training, 

ReLU for introducing non-linearity, Residual connections 

for overcoming vanishing gradient issues, and MaxPooling 

2D for down-sampling and preserving essential information. 

The collaborative effect of these operations enhances the 

model's capacity to discern intricate gesture nuances. 

Recognizing the need for a more comprehensive dataset, 

both images and corresponding 16-point hand 

representations, the work seamlessly transitioned to the Leap 

Gesture Dataset. This dataset enriches the training data with 

crucial visual information, forming the cornerstone for a 

robust hand gesture recognition model. The decision to 



 

integrate the Leap Gesture Dataset was guided by the 

understanding that a holistic approach, combining image 

data and key hand points, is vital for training the CNN model 

to get the class labels as intermediate output. 

In the context of our gesture classification module, the 

system design goal lies in constructing and training a 

Convolutional Neural Network (CNN) model for effective 

hand gesture recognition. The implementation process 

commences by loading preprocessed data encompassing 3D 

pose information and their corresponding coarse labels for 

various gestures. The model consists of convolutional layers, 

max-pooling layers, fully connected layers, ReLU activation 

functions, and L2 regularization to prevent overfitting. The 

model is subsequently compiled with the Adam optimizer 

and a sparse categorical cross entropy loss function, making 

it ready for training. The training process ensues, involving 

30 epochs and monitoring performance against a validation 

set to ensure generalization. Early stopping is used to stop 

the model training when overfitting occurs. 

3.3 Transfer learning with dynamic learning rate 

In the proposed system, once the region of interest is 

identified, it is passed to the next module, which employs a 

dynamic learning rate adjustable ResNet-based transfer 

learning model for gesture classification. The ResNet 

(Residual Network) architectures are renowned for their 

ability to effectively train deep neural networks, even with a 

large number of layers. By leveraging transfer learning, the 

system capitalizes on pre-trained ResNet models, fine-tuning 

them to recognize hand gestures specific to the application. 

This approach significantly reduces the training time and 

computational resources required to achieve high 

classification accuracy. 

One key aspect of the model is its dynamic learning rate 

adjustment mechanism. The system employs a piecewise 

learn rate schedule with a learn rate drop factor of 0.2. This 

factor allows for the systematic reduction of the learning rate 

during training, thereby enabling the model to converge 

more effectively. The learn rate drop period is set to 1 epoch, 

ensuring that the learning rate is updated at the end of each 

training epoch. Additionally, the initial learn rate is set to 1 

× 10-4, providing an appropriate starting point for the training 

process. 

The dynamic adjustment of the learning rate is crucial for 

optimizing the training process and improving the model's 

performance over time. By gradually decreasing the learning 

rate as training progresses, the system prevents the model 

from getting stuck in local minima and facilitates smoother 

convergence towards the global optimum. This dynamic 

learning rate strategy ensures that the model can effectively 

adapt to the complexities of the gesture recognition task, 

ultimately leading to more accurate classification results. 

Finally, the output of the ResNet-based transfer learning 

model is used for gesture classification, where gestures are 

categorized into n classes based on their visual 

representations. This classification process is essential for 

enabling the system to accurately interpret and respond to 

user gestures, thereby facilitating intuitive and seamless 

interaction within the smart home environment. Through the 

integration of advanced learning techniques and dynamic 

learning rate adjustment, the system achieves robust and 

efficient gesture recognition capabilities, enhancing user 

experience and system performance. 

3.4 Class Probability Fusion and Integration with IoT 

devices 

Following the fusion process, the system evaluates the 

probabilities associated with each class to determine the final 

predicted gesture. This strategic fusion of predictions 

ensures that the system maximizes its capability to capture 

diverse aspects of gestures, thereby enhancing overall 

accuracy and reliability in classification tasks. By effectively 

leveraging the strengths of both channels, the system enables 

seamless and intuitive interaction within smart home 

environments, enhancing user experience. 

The technique behind class probability fusion is 

mathematically defined as follows: 

Let P(i) represent the probability of class i predicted by 

Attention based CNN Model (Model 1) and P(j) represent 

the probability of class j predicted by CNN Model with 

Dynamic learning (Model 2) where i, j = 1,2,3,4,5,…n where 

n is the number of classes. The final predicted gesture is 

determined by selecting the class with the highest probability 

among the predictions from both models. This is expressed 

as: 

����� ��	
��� = ������(���(�(�), �(�)))    (1) 

Equation (1) computes the maximum probability among the 

predictions from both models for each class and selects the 

class with the highest maximum probability as the final 

predicted gesture. 

Once the gesture is successfully classified using the trained 

model on the Raspberry Pi, the resulting class label serves as 

a command to operate appliances via a relay system. This 

relay system acts as an intermediary between the Raspberry 

Pi and the appliances, enabling seamless integration of 

gesture-based control into the smart home environment. 

With this setup, a wide range of appliances including fans, 

lights, televisions, and air-conditioners can be controlled 

using hand gestures recognized by the proposed model. Each 

gesture class corresponds to a specific appliance operation, 

allowing users to intuitively interact with their smart home 

ecosystem without the need for physical switches or remote 

controls. This integration of gesture recognition system with 

IoT based appliance control enhances user experience and 

facilitates a more interactive and responsive home 

environment. The hardware experimental set up is shown in 

Figure 2. 



 

 

Figure 2 – Experimental setup     

4. RESULTS AND DISCUSSIONS 

4.1 Comparative analysis of model performance 

The model referred in [11] which is CNN-based, achieves a 

training accuracy of 82.36% and a testing accuracy of 

66.18%. In contrast, the baseline model for gesture 

classification [12] demonstrates higher accuracies, with a 

training accuracy of 98.6% and a testing accuracy of 72.62%. 

Moreover, the gesture classification model utilizing Tensor 

extraction and attention mechanisms achieves even greater 

accuracy, boasting a training accuracy of 99.53% and a 

testing accuracy of 83.2%. Lastly, the transfer learning 

model surpasses all others in accuracy, achieving an 

impressive training accuracy of 99.16% and an outstanding 

testing accuracy of 98.24%. These results underscore the 

effectiveness of gesture classification through different 

model architectures, with the dynamic learning approach 

particularly excelling in both training and testing accuracies. 

Table 2 lists the comparative analytical performance 

measure of the attempted models. 

Table 2 – Comparison with existing models 

Sl. 

no 
Model Name 

Training 

Accuracy 

Testing 

Accuracy 

1 CNN model [12] 82.36% 66.18% 

2 

Baseline CNN Model 

for Gesture 

Classification [13] 

98.6% 72.62% 

4 

Gesture 

Classification using 

Tensor extraction – 

Attention based 

99.53% 83.2% 

5 
CNN Model with 

dynamic learning 
99.16% 98.24% 

4.2    Realtime testing and latency analysis 

The latency is observed in predicting a gesture from 

accepting the input till updating the state of the appliance. 

Latency calculation is carried using python’s inbuilt time 

package. The observed latency is 0.195 seconds, which is the 

average delay for 20 consecutive predictions. The existing 

model stated in [14] has a latency of 0.312 seconds. A 

comparative analysis of latency is presented in Table 3. 

Table 3 – Gesture recognition latency 

The test accuracy, denoting the proportion of correctly 

classified instances in our model when assessed on 

previously unseen data, stands impressively at 98.24%. 

Conversely, the training accuracy, gauging the proportion of 

correctly classified instances within the training dataset, 

registers at 99.16%. The training loss of 2.63%, indicates the 

extent of error or deviation between the model's predictions 

and actual target values during the training process, guiding 

the optimization of our machine learning model. Validation 

loss, another critical metric, quantifying the discordance 

between the model's predictions and the actual target values 

on validation data, is 5.9%, thus serving as a vital gauge of 

model generalization and performance on unseen data. 

 

Figure 3(a) – Realtime Implementation to on the 

appliance 

 

Figure 3(b) – Realtime Implementation to off the 

appliance 

A sample result of real-time experimentation of system 

output depicted in Figure 3, shows gesture 4 being classified. 

It invokes the light to be in ON state whereas gesture 5 

invokes the light to be in OFF state. The appliance control 

with gestures is shown in Table 4. 

Sl. No Model Name Accuracy Latency 

1 Long-term 

Memory 

Augmented 

Network [14] 

97.3% 0.312 seconds 

2 Proposed model  99.16% 0.195 seconds 



 

Table 4 – Appliance Control 

Class Label Gesture Appliance Control 

4 

 

Light ON 

5 

 

Light OFF 

5. CONCLUSION 

The proposed system culminates in a comprehensive 

approach to gesture-driven smart home automation 

leveraging IoT. Through the integration of advanced 

machine learning techniques such as deep learning, transfer 

learning, and attention mechanism, the system is capable of 

accurately recognizing and responding to hand gestures in 

real-time. The proposed system architecture, modular in 

design, seamlessly integrates continuous camera feed, 

gesture recognition modules, and IoT, demonstrating 

enhanced computational capabilities and efficiency. The 

attention mechanism with dynamic learning rate enhances 

the system's adaptability and performance, making it a potent 

tool for real-world gesture recognition systems. Achieving 

impressive testing accuracy of 98.24%, and 99.16% on train 

accuracy, the system demonstrates its efficacy in real-world 

applications. The low latency of 0.195 seconds for 20 

consecutive predictions further emphasizes the system's real-

time responsiveness and practical utility. Overall, the 

proposed system represents a significant advancement in 

gesture-driven smart home automation, showcasing the 

transformative potential of leveraging IoT and advanced 

computational techniques for enhancing human-computer 

interaction in smart environments. The working model offers 

a practical solution for functional requirements for a smart 

home gateway under ITU-T Recommendation J.1611. 
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