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Motivation

Smart Homes Environment

• Gestural control offers hands-free, intuitive interaction with home 

appliances

• IoT facilitates seamless device communication in a cohesive ecosystem

Gesture Recognition as an Ideal Interface

• Natural, intuitive method for controlling devices without physical touch or 

voice commands

• Particularly useful in noisy environments where voice commands might fail

Need for a Sophisticated Approach

• Exploration of 3D tensor representations and deep learning models

• Need for a better attention mechanism and transfer learning to enhance 

accuracy and reduce latency
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Background & Related Technologies

ITU-T Recommendations

• J.1612 defines functional requirements for a smart home gateway

• J.1611 deals with the architecture for a smart home gateway

Deep Learning in Gesture Recognition

• Extended Convolutional Neural Networks to extract spatial features 

from gestures

• Attention-based models for improved focus on relevant features

IoT in Smart Home Automation

• IoT bridges the gap between gesture recognition and device control

• Use of Raspberry Pi for integrating the recognition model with home 

appliances
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Overview of the Proposed System
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System Architecture
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Algorithm
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𝐅𝐢𝐧𝐚𝐥 𝐠𝐞𝐬𝐭𝐮𝐫𝐞 = 𝐀𝐫𝐠𝐌𝐚𝐱 𝐦𝐚𝐱 𝐏 𝒊 ,𝐏 𝒋

P(i) - probability of class i predicted by Attention based 

CNN Model (Model 1)

P(j) - probability of class j predicted by CNN Model 

with Dynamic learning (Model 2) 

[i, j = 1,2,3,4,5,…n where n is the number of classes]



Implementation Overview

Fig. Experimental Setup

Software Packages and 
Libraries
 OpenCV 4.8
 Tenserflow 2.16 
 Python v3.11
Computing Hardware and OS
 Raspberry Pi 4 with 4GB 

RAM 
 Raspbian OS v2.9
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Fig. Attention based CNN Model



Experimental Results

Table 1 - Comparison with existing 

models
Sl. No Model Name

Training 

Accuracy

Testing 

Accuracy

1 Standard CNN model 82.36% 66.18%

2
Baseline CNN Model for 

Gesture Classification
98.6% 72.62%

3

Gesture Classification 

using Tensor extraction

(Attention based model-

proposed)

99.53% 83.2%

4

Transfer Learning Model 

with dynamic learning 

rate (proposed)

99.16% 98.24%

The proposed model achieves an 

overall training and testing accuracy in 

access of 99% and 98% respectively 

with an average latency of 0.195

seconds.
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Experimental Results cont.
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Conclusion

• The proposed system achieves gesture-driven smart home automation, integrating IoT and 

advanced ML techniques

• Utilizes Deep Learning, Transfer Learning, and Attention Mechanisms for real-time, high-

accuracy gesture recognition

• Modular architecture supports continuous camera feed, gesture modules, and IoT device 

control, ensuring efficiency and adaptability in real-world scenarios

• Testing accuracy in access of 98% with an average latency of 0.195 seconds.

• Enhances Human-Computer Interaction in smart homes
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