NEW DELHI2024

Innovation and digital transformation for a sustainable world

21-23 October 2024 New Delhi, India

Hand Gesture driven Smart Home Automation Leveraging Internet of Things

22 October 2024

Dhananjay Kumar Affiliation: Department of

Information Technology, Anna University, Chennai, India

Session 7 – Enabling technologies

Paper S7.3

Sowbarnigaa K S

Affiliation: Department of Information Technology, Anna University, Chennai, India

Session 7 – Enabling technologies

Paper S7.3

Outline

- Motivation
- Background and Related Technologies
- Overview of the Proposed System
- System Architecture
- Algorithm
- Implementation Overview
- Experimental Results
- Conclusion

Motivation

Smart Homes Environment

- Gestural control offers hands-free, intuitive interaction with home appliances
- IoT facilitates seamless device communication in a cohesive ecosystem

Gesture Recognition as an Ideal Interface

accuracy and reduce latency

- Natural, intuitive method for controlling devices without physical touch or voice commands
- Particularly useful in **noisy environments** where voice commands might fail

Need for a Sophisticated Approach

- Exploration of **3D tensor representations** and deep learning models
- Need for a better attention mechanism and transfer learning to enhance

Background & Related Technologies

ITU-T Recommendations

- J.1612 defines functional requirements for a smart home gateway
- J.1611 deals with the architecture for a smart home gateway

Deep Learning in Gesture Recognition

- Extended Convolutional Neural Networks to extract spatial features from gestures
- Attention-based models for improved focus on relevant features

IoT in Smart Home Automation

- IoT bridges the gap between gesture recognition and device control
- Use of Raspberry Pi for integrating the recognition model with home appliances

System Architecture

Implementation Overview

Fig. Attention based CNN Model

Software Packages and Libraries

- ✓ OpenCV 4.8
- ✓ Tenserflow 2.16
- ✓ Python v3.11

Computing Hardware and OS

- ✓ Raspberry Pi 4 with 4GB
 RAM
- ✓ Raspbian OS v2.9

Fig. Experimental Setup

Experimental Results

Table 1 - Comparison with existing

SI. No	Model Name	Training Accuracy	Testing Accuracy
1	Standard CNN model	82.36%	66.18%
2	Baseline CNN Model for Gesture Classification	98.6%	72.62%
3	Gesture Classification using Tensor extraction (Attention based model- proposed)	99.53%	83.2%
4	Transfer Learning Model with dynamic learning rate (proposed)	99.16%	98.24%

The proposed model achieves an overall training and testing accuracy in access of 99% and 98% respectively with an average latency of 0.195 seconds.

Experimental Results cont.

Fig. Snapshots during testing

Fig. Gesture identification

Conclusion

- The proposed system achieves gesture-driven smart home automation, integrating IoT and advanced ML techniques
- Utilizes Deep Learning, Transfer Learning, and Attention Mechanisms for real-time, highaccuracy gesture recognition
- Modular architecture supports continuous camera feed, gesture modules, and IoT device control, ensuring efficiency and adaptability in real-world scenarios
- Testing accuracy in access of 98% with an average latency of 0.195 seconds.
- Enhances Human-Computer Interaction in smart homes

Thank youk