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Semantic 
Communication

Semantic Communication focuses 
on the meaning of the data 
rather than transmitting raw data

Traditional Communication: 
Focuses on bit-level accuracy and 
raw data transfer

Objective: Reduce data 
transmission size and improve 
efficiency 



“HOW PRECISELY DO 

THE TRANSMITTED 

SYMBOLS CONVEY THE 

DESIRED MEANING?”

THE SEMANTIC PROBLEM

Image Source: Fixing the Economists. (2013, November 5). Is Real Communication Possible? Berkeley's Particularism and Lacan's Semantic Slippage.



Motivation for 

Advancing Semantic 

Communication

5G to 6G Transition: Emerging 
technologies (AI, IoT, autonomous 
systems) require higher data rates 
and more efficient communication

Challenges in 5G: Latency, 
bandwidth constraints, and lack of 
real-time adaptability

Solution: SC prioritizes meaning to 
enhance efficiency, lower latency, 
and reduce bandwidth consumption



Challenges in 

Current Image 

Transfer Systems

Conventional methods transfer 
raw pixel data, leading to large 
bandwidth consumption

Single-modality image 
transmission (e.g., text) fails to 
capture the full context of images

Need for Innovation: Can we 
reduce data while maintaining the 
semantic richness of the image?



Proposed solution: 

multi-modal image 

transfer

Introduced a multi-modal approach: 
Primary Mode: Text captions generated 
using deep learning models (BLIP)

Secondary Mode: Line art or other 
structural representations to enhance 
image fidelity

This approach balances data reduction 
and the preservation of semantic details



Advantages of Image Captioning • Data Reduction

• Semantic Fidelity



System Architecture Overview

Fig.1 Semantic-aided image transfer through multi-modality



Multi-Modality in Semantic Communication

Why Multi-Modality?

• Single modality (captions only) misses important visual and spatial details

• Multi-modality (captions + structural data) provides a richer and more 
complete representation of the image

• Key Benefits: 

Increased fidelity with lower data transmission requirements

Better semantic interpretation of images at the receiving end



Comparison of 
Secondary 
Modes

• Depth Map: Provides spatial information by assigning depth 
values to pixels

• Canny Edge: Focuses on edge detection by locating changes 
in intensity (used for structural outline)

• Line Art: Emphasizes structure and form without color or 
shading (selected for best balance between fidelity and data 
reduction)



Performance Metrics for Evaluation

• Mean Squared Error (MSE): Measures the pixel-level error between 
the original and reconstructed images

• Peak Signal-to-Noise Ratio (PSNR): Indicates the signal quality; higher 
values represent better reconstructions

• Structural Similarity Index (SSI): Evaluates perceptual similarity, 
focusing on how closely the reconstructed image matches the original 
from a human visual perspective



Overall Comparison



Results: MSE Performance • Observation: Lower MSE 
indicates better image 
reconstruction accuracy

• Finding: Line art consistently 
shows the lowest MSE, 
outperforming other modes 
such as Canny Edge and Depth 
Map

• Conclusion: Line art is the 
most effective secondary 
mode for minimizing 
reconstruction errors



Results: PSNR Performance

• Observation: Higher PSNR 

values reflect better 

preservation of signal quality

• Finding: Line art delivers the 

highest PSNR among the 

tested modes, indicating that 

it maintains the highest 

fidelity in image 

reconstruction



Results: SSI Performance
• Observation: SSI measures 

the visual similarity of 
reconstructed images to the 
original

• Finding: Line art shows the 
highest SSI, making it the 
most effective at producing 
images that are 
perceptually similar to the 
original



Data Reduction Analysis
• Original Image: 728x492 

pixels, requiring 8.59 million 

bits

• Caption + Line Art Significant 

data reduction, with line art 

requiring 2.86 million bits and 

the caption requiring 312 bits

• Conclusion: This multi-modal 

approach reduces the data 

required by nearly 65% while 

maintaining image fidelity



Conclusion

• Summary:

• Proposed a novel multi-modal system for semantic-aided image 

transfer using captions and line art

• Demonstrated significant data reduction with minimal loss in image 

quality

• Line art emerges as the optimal second mode for preserving image 

structure and minimizing data

• Future Work:

• Investigate the addition of color consistency to further improve 

reconstruction accuracy

• Explore more complex images and dynamic content in real-time 

applications
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