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ABSTRACT 

This research proposes a novel framework that integrates 

state-of-the-art large language models (LLMs) with curated 

medical knowledge bases to enable personalized, reliable, 

and user-centric digital health services. The architecture 

combines advanced generative models, retrieval-augmented 

generation, and domain adaptation strategies to ensure the 

safety and ethical alignment of AI-driven health 

recommendations. Empirical evaluations, including 

automated benchmarks and user studies, demonstrate the 

framework's ability to provide accurate, relevant, and 

personalized health information that resonates with patients 

and providers. The results highlight the potential of this 

approach to bridge the gap between general-purpose LLMs 

and domain-specific healthcare applications. However, the 

work also underscores the challenges in responsibly 

developing and deploying generative AI for healthcare, such 

as safety, robustness, fairness, privacy, and interpretability. 

The research advocates for multidisciplinary collaboration 

to address these challenges and realize the potential of AI in 

enhancing health and well-being worldwide. By prioritizing 

patient agency, clinical validity, and ethical practices, this 

work contributes to the growing body of knowledge at the 

intersection of AI and healthcare, laying the foundation for 

future research and innovation in personalized, equitable, 

and trustworthy AI health services. 
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1. INTRODUCTION 

The rapid advancement of artificial intelligence (AI) 

technologies, particularly in the domain of generative AI and 

large language models (LLMs), has opened up exciting new 

possibilities for delivering personalized digital health 

services [1]. As emphasized by the United Nations' 

Sustainable Development Goals (SDGs) and the 

International Telecommunication Union's (ITU) vision, 

harnessing the power of information and communication 

technologies (ICTs) can accelerate human progress, bridge 

digital divides, and enable sustainable growth and 

development for all [2][3]. In this context, AI-driven e-health 

services hold immense potential to revolutionize healthcare 

delivery by providing accessible, affordable, and tailored 

solutions to individuals' unique health needs. Generative AI 

models, such as OpenAI's GPT series, Google's BERT, and 

others, have demonstrated remarkable capabilities in 

understanding and generating human-like text, engaging in 

contextual conversations, and reasoning over complex 

information [4]. These models learn from vast amounts of 

data to build rich statistical representations of language, 

knowledge, and reasoning patterns. By leveraging these 

capabilities, digital health platforms can offer intelligent, 

interactive, and personalized services that cater to users' 

specific health profiles, preferences, and goals [5].  However, 

realizing the full potential of generative AI in digital health 

also presents significant research challenges [6]. These 

include ensuring AI systems' reliability, safety, and ethical 

alignment; protecting user privacy and data security; 

enabling seamless integration with existing healthcare 

infrastructures; and fostering trust and adoption among 

diverse user populations. Addressing these challenges 

requires multidisciplinary efforts spanning AI, human-

computer interaction, health informatics, and social sciences. 

This research paper explores the opportunities, challenges, 

and future directions for leveraging generative AI to enable 

personalized digital health services. It aims to provide a 

comprehensive overview of the current state-of-the-art, 

identify key research gaps, and propose a roadmap for future 

work in this important domain. The paper is organized as 

follows: Section 2 reviews related literature on AI-driven 

health services; Section 3 describes our proposed 

methodology based on generative AI and knowledge 

retrieval; Section 4 presents result from initial experiments; 

Section 5 discusses key findings and their implications; and 

Section 6 concludes with a summary of contributions and 

future research directions. 

2. LITERATURE REVIEW 

2.1 AI in Digital Health Services 

The application of AI in healthcare and digital health 

services has been an active area of research in recent years 

[7]. AI techniques such as machine learning, natural 

language processing, computer vision, and robotics are being 



 

explored to enable intelligent and personalized health 

interventions across various domains, including disease 

diagnosis, treatment planning, health monitoring, and patient 

engagement [8]. Machine learning models trained on large 

medical datasets have shown promise in assisting clinicians 

with diagnostic tasks, such as detecting cancers from medical 

images [9], predicting adverse drug events from electronic 

health records [10] and identifying mental health conditions 

from EEG data [11]. Chatbots and conversational agents 

powered by natural language processing are being developed 

to provide patient education, symptom assessment, and 

treatment recommendations [12]. Computer vision 

techniques enable new assistive technologies for visually 

impaired individuals [13] while AI-enabled robots support 

elder care and physical therapy [14]. However, current AI 

applications in digital health largely rely on narrow, task-

specific models that are trained on limited, curated datasets. 

They often lack the breadth of knowledge, contextual 

understanding, and reasoning capabilities needed to provide 

truly personalized and engaging user experiences. 

Generative AI models that can leverage vast amounts of 

general-purpose data offer a promising approach to bridge 

this gap. 

2.2 Generative AI and Large Language Models 

Generative AI refers to a class of AI models that can generate 

new content, such as text, images, or audio, by learning 

patterns and representations from large datasets. Recent 

advances in deep learning, particularly transformer 

architectures [15], have enabled the development of 

powerful generative language models that can understand 

and generate human-like text with remarkable coherence and 

fluency. Models like GPT-3 [4], BERT [16] and T5 [17] have 

been pre-trained on massive text corpora from the web, 

books, and other sources, allowing them to capture rich 

knowledge about language, concepts, and reasoning patterns.  

By fine-tuning these models on domain-specific data or 

providing them with contextual prompts, developers can 

create intelligent applications that can engage in open-ended 

conversations, answer questions, summarize documents, and 

even write creative fiction. The potential of generative AI for 

enabling personalized digital services has been demonstrated 

in various domains, such as education [18], customer support 

[19] and mental health [20].  

Applying generative AI in high-stakes domains like 

healthcare also raises important challenges around reliability, 

safety, and ethical alignment.  LLMs can sometimes generate 

inaccurate, biased, or even harmful content, emphasizing the 

need for careful prompt engineering, output filtering, and 

human oversight [21]. Another critical consideration is 

ensuring privacy and security of sensitive health data used to 

train and deploy these models. Research on controllable and 

safe generation techniques, model interpretability, and value 

alignment is ongoing in the AI community [22]. 

2.3 Knowledge Retrieval for Personalized Health 

Providing personalized health services requires the ability to 

retrieve relevant and trustworthy information based on an 

individual's specific context and needs. Traditional 

knowledge retrieval approaches based on keyword matching 

or document similarity often fail to capture the nuanced 

semantics and reasoning required for health-related queries. 

Semantic search techniques that leverage knowledge graphs, 

ontologies and embeddings have shown promise in 

improving the relevance and coverage of health information 

retrieval [23], [24].  These approaches can enable more 

precise and comprehensive search results by mapping 

queries and documents to structured representations that 

capture entities, relationships, and concepts. Retrieval-

augmented generation (RAG) is an emerging paradigm 

combining knowledge retrieval and generative AI to enable 

more informed and reliable language understanding and 

generation [25]. RAG models use a retriever component to 

find relevant context from an external knowledge source, 

which is then passed to a generator component to produce a 

contextually appropriate response.  

Recent work has demonstrated the potential of RAG for 

improving the factual accuracy and consistency of generative 

models in open-domain question answering [26] and 

dialogue [27]. Applying RAG to personalized health 

retrieval can enable generative models to access curated, 

domain-specific knowledge sources, such as medical 

ontologies, clinical guidelines, and patient education 

resources. By grounding generated content in verified health 

information, RAG can help ensure the reliability and safety 

of AI-driven health services. However, designing effective 

retrieval mechanisms that can handle the complexity and 

diversity of health queries, while preserving user privacy, 

remains an open challenge. 

3. RESEARCH METHODOLOGY 

3.1 System Overview 

 

Figure 1 – System architecture diagram 



 

Figure 1 presents an updated overview of our proposed 

system architecture for AI-driven personalized health 

services. The system consists of three main components: (1) 

a user interaction layer, (2) a generative AI model, and (3) a 

knowledge retrieval engine [28].  The user interaction layer 

provides natural language interfaces, such as chatbots, voice 

assistants, or mobile apps, for users to input their health 

queries, symptoms, or goals. These inputs are translated into 

structured prompts that specify the desired output format and 

any relevant patient context. The prompts are then 

augmented with relevant medical knowledge retrieved from 

the knowledge base. The augmented prompts are fed into the 

generative AI model, which is a large language model pre-

trained on general-purpose text data and fine-tuned on 

domain-specific health corpora [29]. The model generates 

personalized health information or recommendations as 

output, tailored to the user's specific prompt and retrieved 

context [30]. Techniques for safe and controllable generation, 

such as domain-adaptive pretraining, content filtering, and 

human feedback, are applied to ensure outputs align with 

verified health guidelines. The knowledge retrieval engine 

consists of a knowledge base that stores structured health 

data (e.g., ontologies, clinical guidelines, drug databases), 

and a retrieval module that finds relevant information based 

on the user prompt and generated output. The retriever uses 

semantic search techniques (e.g., entity linking, embedding 

similarity) to map natural language to knowledge base 

entries. Retrieved context is passed back to the generative 

model to inform and ground its outputs [31][32]. 

3.2 Data and Knowledge Sources 

Our system leverages a combination of large-scale 

unstructured text corpora and structured knowledge bases to 

train the generative model and retrieval engine. For pre-

training the base language model, we use general-purpose 

text datasets containing billions of tokens, such as Common 

Crawl [33] and The Pile. For fine-tuning, we curate a health-

specific corpus containing millions of documents from 

authoritative sources such as PubMed [34], UpToDate, 

Merck Manuals, and MedlinePlus.  We apply data cleaning, 

deduplication, and quality control techniques to ensure the 

fine-tuning data is relevant, reliable, and representative of 

the target health domains. To build the knowledge base for 

retrieval, we integrate existing health ontologies and 

knowledge graphs, such as ICD-11 [35], SNOMED-CT, 

DrugBank, and UMLS. We also create custom knowledge 

bases by extracting structured information from semi-

structured health content, such as clinical practice guidelines, 

drug package inserts, and patient FAQs. Knowledge entries 

are stored as subject-relation-object triples and indexed using 

efficient retrieval algorithms. 

3.3 Model Training and Inference 

The base language model is pre-trained on the general text 

corpus using self-supervised objectives, such as masked 

language modeling [36] or permutation language modeling 

[37]. Pre-training allows the model to learn generalizable 

language patterns and representations that can be transferred 

to downstream health tasks.  The pre-trained model is then 

fine-tuned on the curated health corpus using supervised 

training objectives, such as next-token prediction or 

sequence-to-sequence translation. We experiment with 

various fine-tuning approaches, including continued pre-

training on in-domain data, multi-task learning on related 

health tasks, and instruction-based fine-tuning using prompt 

templates. Fine-tuning adapts the model to the target health 

domain and improves its ability to generate relevant, 

accurate health content. We also explore techniques for safe, 

controllable generation, such as: 

• Controlled decoding methods that constrain model 

outputs to align with specified attributes or styles  

• Safety classifiers that filter or mask potentially 

unsafe or offensive content 

• Reinforcement learning from human feedback to 

reward desirable behaviors and outputs 

For model serving, we use a retrieval-augmented generation 

(RAG) approach that combines the strengths of the 

generative model and knowledge retrieval. Given a user 

prompt, the retriever first searches the knowledge base for 

relevant context, such as definitions of medical terms, 

clinical guidelines for mentioned conditions, or drug 

information for queried medications.  The retrieved context 

is appended to the user prompt to create an augmented input 

for the generator. The generative model then produces a 

contextually appropriate response that is both personalized 

to the user's specific query and grounded in the retrieved 

medical knowledge [39]. The generated output can 

optionally be fed back into the retriever for additional fact-

checking and refinement. 

3.4 Evaluation Framework 

We conduct extensive evaluations of our system using both 

automated metrics and human judgments. For automated 

evaluation, we measure the quality of generated outputs 

using standard language modeling metrics such as perplexity, 

BLEU [40] and ROUGE. We also assess the factual accuracy 

of outputs by cross-referencing them against ground-truth 

health information using textual entailment models or 

medical fact-checking APIs [41]. To understand our system's 

practical utility and usability, we carry out user studies with 

target stakeholders, including patients, caregivers, and 

healthcare providers. Study designs include controlled 

experiments comparing our system to existing baselines, 

longitudinal field studies examining user engagement and 

behavior change, and qualitative interviews probing user 

attitudes, needs, and concerns. Participants perform 

representative health-related tasks using our system, such as 

seeking information about specific conditions, interpreting 

lab results, or managing chronic illnesses. We collect both 

objective usage metrics (e.g. task completion time, error rate, 

interaction logs) and subjective user feedback through 

surveys and interviews. Experienced medical professionals 

also review a sample of generated outputs to rate their 



 

relevance, clarity, and clinical validity. In addition to 

evaluating system performance, we place a strong emphasis 

on safety and robustness under real-world conditions. This 

includes: 

• Stress testing on adversarial or edge-case inputs to 

identify potential failure modes 

• Bias and fairness audits to detect and mitigate 

performance gaps across different user subgroups  

• Security and privacy assessments to protect user 

data and prevent misuse 

• Expert oversight and approval from clinical and 

ethics review boards 

• Staged rollouts with continuous monitoring and 

improvement based on user feedback 

We engage closely with domain experts and stakeholders 

throughout the development lifecycle to inform our research 

roadmap, evaluation criteria, and deployment decisions. This 

helps ensure our work remains grounded in real healthcare 

needs and contexts. 

4. RESULTS 

Table 1 presents the results of automated evaluation on a 

held-out test set of 1,000 user health queries. We report 

perplexity, BLEU-4, and ROUGE-L scores to measure the 

quality and fluency of generated responses, along with 

factual accuracy assessed using a medical textual entailment 

model.  

Table 1 – Automated Evaluation Results 

Metric Score 

Perplexity 8.5 

BLEU-4 0.38 

ROUGE-L 0.45 

Factual Accuracy 92% 

Our model achieves strong results, with low perplexity (8.5) 

and high BLEU/ROUGE scores, indicating its generated text 

is fluent, coherent, and closely matches reference responses. 

The factual accuracy of 92% is also promising, showing the 

knowledge retrieval augmentations help keep the model 

grounded in reliable medical information. 

 

Figure 2: Bar chart of average user ratings 

To further validate practical usability, we conducted a user 

study with 50 participants (40 patients, 10 providers) who 

used the system for health queries and tasks over one week. 

After each interaction, they rated the responses on several 

key attributes using a 1-5 Likert scale. 

Figure 2 shows the distribution of user ratings broken out by 

patients and providers. Patients reported high overall 

satisfaction, with relevance, usefulness, and clarity scores all 

above 4.2 on average. Providers also viewed the system 

positively, with medical accuracy rated 4.0 on average. 

These results demonstrate our approach can provide valuable, 

user-friendly support for real health needs.   

Table 2 – Example User Queries and Generated 

Responses 

Query Response 

What are 

some lifestyle 

changes I can 

make to 

manage my 

high blood 

pressure? 

To help manage your hypertension, consider 

the following lifestyle changes: (1) Adopt a 

healthy diet rich in fruits, vegetables, whole 

grains, and low-fat dairy, while limiting 

saturated fats and sodium. The DASH diet is 

often recommended for blood pressure 

control. (2) Engage in regular physical 

activity, aiming for at least 150 minutes per 

week of moderate-intensity aerobic exercise, 

such as brisk walking. (3) Manage stress 

through relaxation techniques like deep 

breathing, meditation, or yoga. (4) Limit 

alcohol consumption and quit smoking, as 

both can raise blood pressure. Be sure to 

work with your healthcare provider to 

monitor your blood pressure and adjust your 

treatment plan as needed. 

 



 

Can I take 

ibuprofen 

while on 

lisinopril for 

my blood 

pressure? 

Ibuprofen is a nonsteroidal anti-inflammatory 

drug (NSAID) used to treat pain and 

inflammation, while lisinopril is an ACE 

inhibitor used to treat hypertension and other 

cardiovascular conditions. Taking ibuprofen 

while on lisinopril can potentially decrease 

the effectiveness of lisinopril and increase 

your risk of kidney problems. If you need 

pain relief, acetaminophen is generally 

considered a safer option. However, it's 

always best to consult with your doctor or 

pharmacist before taking any new 

medications to avoid potential drug 

interactions. They can recommend the most 

appropriate treatment options based on your 

individual health needs and medical history. 

Table 2 illustrates two representative user interactions, 

showing how the RAG incorporates retrieved knowledge to 

personalize and strengthen its responses compared to a 

baseline without augmentation. For example, when the user 

asks about lifestyle changes for hypertension, the system 

draws on authoritative guidelines like DASH to suggest 

tailored diet and exercise tips. The drug interaction query 

triggers a safety warning and recommendation to consult a 

doctor, based on structured information from a medical 

database. These examples highlight how our framework 

enables more informed, actionable, and context-aware health 

advice by dynamically integrating relevant domain 

knowledge into the generative process. The personalized 

outputs also establish a meaningful user dialogue, while the 

retrieved facts help maintain clinical validity. 

5. DISCUSSION 

Our results demonstrate the potential of generative AI and 

knowledge retrieval to enable personalized digital health 

services. By combining the strengths of large language 

models, which can engage in fluent, contextual interactions, 

with curated health knowledge bases, which provide verified, 

domain-specific information, our proposed system can 

provide users with relevant, reliable, and actionable health 

support.  The automated evaluation results suggest that our 

system can generate high-quality, accurate responses to user 

health queries. The low perplexity and high BLEU and 

ROUGE scores indicate that the generated text is fluent, 

coherent, and aligned with human-written references. The 

factual accuracy of 92% is particularly encouraging, as it 

shows that the system's outputs are grounded in verified 

health information. This is a critical consideration for any AI 

system deployed in the health domain, where inaccurate or 

misleading information could have serious consequences. 

The user study results further validate the system's utility and 

usability. Both lay users and healthcare professionals 

reported high satisfaction with the generated responses' 

relevance, usefulness, and clarity. The positive ratings from 

medical experts also suggest that the system's outputs are 

clinically valid and complete. These findings underscore the 

potential of our approach to bridge the gap between general-

purpose language models and domain-specific health 

applications. 

The representative examples in Table 2 illustrate the system's 

ability to provide personalized, actionable recommendations 

based on users' specific health contexts and needs. By 

leveraging knowledge retrieval, the system can tailor its 

outputs to individual users while maintaining alignment with 

established clinical guidelines and best practices. This level 

of personalization is critical for engaging users and 

promoting behavior change, as generic, one-size-fits-all 

health advice is often less effective. However, our work also 

highlights important limitations and challenges that need to 

be addressed. One key issue is the potential for biased or 

inconsistent outputs, particularly when dealing with complex 

or ambiguous health queries. While our retrieval-augmented 

generation approach helps mitigate this risk by grounding 

outputs in verified knowledge, there may still be cases where 

the model generates inappropriate or misleading responses. 

Developing more robust methods for controlling and 

aligning model outputs, such as adversarial training, value 

learning, or human-in-the-loop oversight, is an important 

direction for future work [42], [43]. Another challenge is the 

need to continuously monitor and update the system's 

knowledge bases to keep pace with the rapidly evolving 

health landscape. As new research findings, treatment 

guidelines, and public health recommendations emerge, it is 

critical that the system's underlying knowledge is updated 

accordingly. This requires ongoing curation and 

maintenance efforts, as well as mechanisms for detecting and 

mitigating potential inconsistencies or conflicts between 

different knowledge sources.  Privacy and security 

considerations are also paramount when deploying AI 

systems in the health domain. While our approach does not 

directly use or store personal health data for model training 

or inference, there may still be risks of sensitive information 

being inadvertently revealed through user interactions. 

Techniques for privacy-preserving AI, such as federated 

learning, differential privacy, and homomorphic encryption, 

could help mitigate these risks and ensure compliance with 

data protection regulations [44]. It is important to recognize 

that our system is intended to supplement, rather than replace, 

human healthcare providers. While generative models can 

provide valuable information and support, they should not be 

used for definitive diagnosis, treatment planning, or 

emergency response. Ensuring appropriate use and setting 

realistic expectations for both users and providers is critical 

for the safe and effective deployment of AI in healthcare.  

There are also vital considerations around responsible 

development practices, model interpretability, and 

stakeholder involvement that require ongoing 

multidisciplinary collaboration to address. Domain experts 

such as clinicians, patient advocates, ethicists, and regulators 

should be engaged throughout the research and development 

lifecycle to align system capabilities with real-world needs, 

values, and constraints. This includes proactive risk 

assessment and mitigation strategies around safety, fairness, 

transparency, and accountability. Policymakers and health 

system leaders will also need to establish governance 



 

frameworks and standards to support the trustworthy 

deployment of AI technologies like ours in clinical 

environments. Despite these challenges, our work 

demonstrates the vast potential of generative AI and 

knowledge retrieval to transform health services and 

experiences. By enabling more personalized, accessible, and 

engaging interactions, these technologies can empower 

individuals to take greater agency over their health and 

wellbeing.  As we continue advancing the state-of-the-art in 

natural language AI and its application to healthcare, it is 

imperative that we do so responsibly, with a clear focus on 

benefiting patients and augmenting human care capabilities. 

With the right technical and institutional safeguards in place, 

we believe AI-powered health systems can make quality, 

proactive, and preventive care more available to all. 

6. CONCLUSION 

The rapid advancements in artificial intelligence, particularly 

generative AI and large language models, have unlocked 

unprecedented opportunities to transform the delivery of 

personalized digital health services. As highlighted by the 

United Nations' Sustainable Development Goals and ITU's 

vision, harnessing AI-driven technologies can significantly 

contribute to bridging healthcare disparities and fostering 

human wellbeing worldwide. This research presented a 

novel framework that leverages the synergies between 

generative AI, knowledge retrieval, and domain expertise to 

enable intelligent, user-centric health support at scale. Our 

proposed architecture seamlessly integrates state-of-the-art 

language models, curated biomedical knowledge bases, and 

intuitive user interfaces to provide individuals with 

personalized, trustworthy, and engaging health interactions. 

By dynamically augmenting generative models with relevant 

domain knowledge, our approach aims to ensure AI-driven 

health recommendations are not only fluent and contextual, 

but also clinically valid and grounded in scientific evidence. 

The extensive empirical evaluations, spanning automated 

benchmarks and user studies, demonstrate the promise of this 

direction. We show that retrieval-augmented generation can 

help produce health information that is highly relevant to 

users' specific needs and circumstances, while maintaining 

strong alignment with established medical facts and 

guidelines. The positive feedback from patients and 

providers alike underscores the practical utility of our 

approach in real-world settings. However, we also highlight 

the substantial challenges and open questions that remain in 

responsibly building and deploying generative AI for 

healthcare. Our discussion emphasizes key considerations 

around safety, robustness, fairness, privacy, and 

interpretability - all of which are especially critical given the 

high-stakes nature of health applications. We advocate for 

continued research and multidisciplinary collaboration to 

tackle these issues. Ultimately, the success of AI-powered 

health systems will depend not only on technical advances, 

but also on fostering public trust and value alignment. By 

prioritizing patient agency, clinical validity, and ethical 

development practices, we can work towards a future where 

AI equitably extends the capacity of health systems and 

empowers individuals everywhere to live healthier lives. As 

we stand at the cusp of a new era in healthcare innovation, 

we have a tremendous opportunity and responsibility to 

harness the transformative potential of AI to benefit 

humanity as a whole. This research serves as a step towards 

that vision, laying the foundation for personalized, scalable, 

and trusted AI health services. We hope it spurs further work 

to meaningfully bridge the gap between cutting-edge AI and 

real-world health impact. 

 REFERENCES 

[1] Arshi, T. A., Ambrin, A., Rao, V., Morande, S., & 

Gul, K. (2022). A Machine Learning Assisted 

Study Exploring Hormonal Influences on 

Entrepreneurial Opportunity Behaviour. Journal of 

Entrepreneurship, 31(3), 575–602. 

https://doi.org/10.1177/09713557221136273  

[2] United Nations. (2015). Sustainable development 

goals. SDGs Transform our world, 2030. 

[3] ITU. (2021). Harnessing the power of technology 

in Least Developed Countries. 

https://www.itu.int/hub/2021/04/harnessing-the-

power-of-technology-in-least-developed-countries/  

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., 

Kaplan, J. D., Dhariwal, P., Neelakantan, A., 

Shyam, P., Sastry, G., Askell, A., Agarwal, S., 

Herbert-Voss, A., Krueger, G., Henighan, T., 

Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, 

C., ... Amodei, D. (2020). Language models are 

few-shot learners. Advances in Neural Information 

Processing Systems, 33, 1877–1901. 

[5] Morande, S., Del Vacchio, E., & Ranieri, A. 

(2020). Digital innovations in healthcare startups: 

transforming service ecosystem. Journal of 

Business Management Studies, 2(1), 26–39. 

[6] Preiksaitis, C., & Rose, C. (2023). Opportunities, 

challenges, and future directions of generative 

artificial intelligence in medical education: 

scoping review. JMIR Medical Education, 9, 

e48785. https://doi.org/10.2196/48785  

[7] Morande, S., & Pietronudo, M. C. (2020). 

Pervasive Health Systems: Convergence through 

Artificial Intelligence and Blockchain 

Technologies. Journal of Commerce and 

Management Thought, 11(2), 155. 

https://doi.org/10.5958/0976-478x.2020.00010.5  

[8] Topol, E. J. (2019). High-performance medicine: 

the convergence of human and artificial 

intelligence. Nature Medicine, 25(1), 44–56. 

https://doi.org/10.1038/s41591-018-0300-7  

https://doi.org/10.1177/09713557221136273
https://www.itu.int/hub/2021/04/harnessing-the-power-of-technology-in-least-developed-countries/
https://www.itu.int/hub/2021/04/harnessing-the-power-of-technology-in-least-developed-countries/
https://doi.org/10.2196/48785
https://doi.org/10.5958/0976-478x.2020.00010.5
https://doi.org/10.1038/s41591-018-0300-7


 

[9] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., 

Swetter, S. M., Blau, H. M., & Thrun, S. (2017). 

Dermatologist-level classification of skin cancer 

with deep neural networks. Nature, 542(7639), 

115–118. https://doi.org/10.1038/nature21056  

[10] Chapman, A. B., Peterson, K. S., Alba, P. R., 

DuVall, S. L., & Patterson, O. V. (2019). 

Detecting adverse drug events with rapidly trained 

classification models. Drug Safety, 42, 147–156. 

https://doi.org/10.1007/s40264-018-0763-y  

[11] Morande, S. (2022). Enhancing psychosomatic 

health using artificial intelligence-based treatment 

protocol: A data science-driven approach. 

International Journal of Information Management 

Data Insights, 2(2), 100124. 

https://doi.org/10.1016/j.jjimei.2022.100124  

[12] Parmar, P., Ryu, J., Pandya, S., Sedoc, J., & 

Agarwal, S. (2022). Health-focused conversational 

agents in person-centered care: a review of apps. 

npj Digital Medicine, 5(1), 1–9. 

https://doi.org/10.1038/s41746-022-00560-6  

[13] Mashiata, M., Choi, G. J., Choi, J. W., Ahn, J. H., 

Kim, J. H., Jeong, S. Y., Jung, H. K., Kim, D.-H., 

Lee, S. H., & Park, J.-U. (2022). Towards assisting 

visually impaired individuals: A review on current 

status and future prospects. Biosensors and 

Bioelectronics: X, 12, 100265. 

https://doi.org/10.1016/j.biosx.2022.100265  

[14] Mele, C., Marzullo, M., Morande, S., & Spena, R. 

(2021). How Artificial Intelligence Enhances 

Human Learning Abilities: Opportunities in the 

Fight Against COVID-19. 3962(February), 1–13. 

[15] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, 

J., Jones, L., Gomez, A. N., Kaiser, Ł., & 

Polosukhin, I. (2017). Attention is all you need. 

Advances in Neural Information Processing 

Systems, 30. 

[16] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, 

K. (2018). BERT: Pre-training of deep 

bidirectional transformers for language 

understanding. arXiv. 

https://doi.org/10.48550/arXiv.1810.04805  

[17] Raffel, C., Shazeer, N., Roberts, A., Lee, K., 

Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, 

P. J. (2020). Exploring the limits of transfer 

learning with a unified text-to-text transformer. 

Journal of Machine Learning Research, 21(140), 

1–67. 

[18] Lee, D., Yeung, S. K., Choi, K., Merchant, Z., 

Chiu, M. M., & Lim, J. (2024). The impact of 

generative AI on higher education learning and 

teaching: A study of educators' perspectives. 

Computers and Education: Artificial Intelligence, 

6, 100221. 

https://doi.org/10.1016/j.caeai.2024.100221  

[19] Ferraro, C., Demsar, V., Sands, S., Restrepo, M., 

& Campbell, C. (2024). The paradoxes of 

generative AI-enabled customer service: A guide 

for managers. Business Horizons. 

https://doi.org/10.1016/j.bushor.2024.04.013  

[20] Morande, S., Tewari, V., & Gul, K. (2022). 

Reinforcing Positive Cognitive States with 

Machine Learning: An Experimental Modeling for 

Preventive Healthcare. In P. A. E. Onal (Ed.), 

Healthcare Access - New Threats, New 

Approaches (Ch. 24). IntechOpen. 

https://doi.org/10.5772/intechopen.108272 

[21] Welbl, J., Glaese, A., Uesato, J., Dathathri, S., 

Mellor, J., Hendricks, L. A., Anderson, K., Kohli, 

P., Coppin, B., & Huang, P.-S. (2021). Challenges 

in detoxifying language models. arXiv. 

https://doi.org/10.48550/arXiv.2109.07445  

[22] d'Avila Garcez, A., & Lamb, L. C. (2020). 

Neurosymbolic AI: The 3rd Wave. arXiv. 

https://doi.org/10.48550/arXiv.2012.05876  

[23] Bonatti, P., Decker, S., Polleres, A., & Presutti, V. 

(2019). Knowledge Graphs: New Directions for 

Knowledge Representation on the Semantic Web 

(Dagstuhl Seminar 18371). Dagstuhl Reports, 

8(9), 29–111. 

https://doi.org/10.4230/DagRep.8.9.29  

[24] Verma, S., Bhatia, R., Harit, S., & Batish, S. 

(2023). Scholarly knowledge graphs through 

structuring scholarly communication: a review. 

Complex & Intelligent Systems, 9(1), 1059–1095. 

https://doi.org/10.1007/s40747-022-00806-6  

[25] Lewis, P., Perez, E., Piktus, A., Petroni, F., 

Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., 

Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. 

(2020). Retrieval-augmented generation for 

knowledge-intensive NLP tasks. Advances in 

Neural Information Processing Systems, 33. 

[26] Hilton, J., Nakano, R., Balaji, S., & Schulman, J. 

(2021). WebGPT: Improving the factual accuracy 

of language models through web browsing. 

OpenAI Blog. 

[27] Wu, T., Terry, M., & Cai, C. J. (2022). AI Chains: 

Transparent and Controllable Human-AI 

Interaction by Chaining Large Language Model 

Prompts. Proceedings of the 2022 CHI Conference 

on Human Factors in Computing Systems. 

https://doi.org/10.1145/3491102.3517582  

https://doi.org/10.1038/nature21056
https://doi.org/10.1007/s40264-018-0763-y
https://doi.org/10.1016/j.jjimei.2022.100124
https://doi.org/10.1038/s41746-022-00560-6
https://doi.org/10.1016/j.biosx.2022.100265
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1016/j.caeai.2024.100221
https://doi.org/10.1016/j.bushor.2024.04.013
https://doi.org/10.48550/arXiv.2109.07445
https://doi.org/10.48550/arXiv.2012.05876
https://doi.org/10.4230/DagRep.8.9.29
https://doi.org/10.1007/s40747-022-00806-6
https://doi.org/10.1145/3491102.3517582


 

[28] Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., 

Fu, F., Yang, L., Zhang, W., Jiang, J., & Cui, B. 

(2024). Retrieval-Augmented Generation for AI-

Generated Content: A Survey. arXiv. 

https://doi.org/10.48550/arXiv.2402.19473  

[29] Shahab, O., El Kurdi, B., Shaukat, A., Nadkarni, 

G., & Soroush, A. (2024). Large language models: 

a primer and gastroenterology applications. 

Therapeutic Advances in Gastroenterology, 17, 

17562848241227032. 

https://doi.org/10.1177/17562848241227031 

[30] Peng, C., He, S., Xu, Y., Li, L., Du, N., Chen, L., 

Zhang, Y., Li, F., Xie, Y., Sun, X., & Xie, P. 

(2023). A study of generative large language 

model for medical research and healthcare. npj 

Digital Medicine, 6(1). 

https://doi.org/10.1038/s41746-023-00958-w  

[31] Sai, S., Gaur, A., Sai, R., Chamola, V., Guizani, 

M., & Rodrigues, J. J. P. C. (2024). Generative AI 

for Transformative Healthcare: A Comprehensive 

Study of Emerging Models, Applications, Case 

Studies and Limitations. IEEE Access. 

https://doi.org/10.1109/ACCESS.2024.3365979  

[32] Nassiri, K., & Akhloufi, M. A. (2024). Recent 

Advances in Large Language Models for 

Healthcare. BioMedInformatics, 4(2), 1097–1143. 

https://doi.org/10.3390/biomedinformatics402006

8  

[33] Gao, L., Biderman, S., Black, S., Golding, L., 

Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., 

Nabeshima, N., Presser, S., & Leahy, C. (2020). 

The Pile: An 800GB dataset of diverse text for 

language modeling. arXiv. 

https://doi.org/10.48550/arXiv.2101.00027  

[34] Miller, N., Tyler, R. J., & Backus, J. E. B. (2004). 

MedlinePlus®: the National Library of Medicine® 

brings quality information to health consumers. 

Library Trends, 53(2), 375-388. 

[35] Pezzella, P. (2022). The ICD‐11 is now officially 

in effect. World Psychiatry, 21(2), 331. 

https://doi.org/10.1002/wps.20997  

[36] Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., 

Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L., 

Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, 

Z., Lu, Z., Qiu, X., Song, R., … Zhu, J. (2021). 

Pre-trained models: Past, present and future. AI 

Open, 2, 225–250. 

https://doi.org/10.1016/j.aiopen.2021.08.002  

[37] Wang, H., Li, J., Wu, H., Hovy, E., & Sun, Y. 

(2023). Pre-Trained Language Models and Their 

Applications. Engineering, 25, 51–65. 

https://doi.org/10.1016/j.eng.2022.04.024  

[38] Gururangan, S., Marasović, A., Swayamdipta, S., 

Lo, K., Beltagy, I., Downey, D., & Smith, N. A. 

(2020). Don't stop pretraining: Adapt language 

models to domains and tasks. arXiv. 

https://doi.org/10.48550/arXiv.2004.10964  

[39] Morande, S., & Tewari, V. (2023). Causality in 

Machine Learning: Innovating Model 

Generalization through Inference of Causal 

Relationships from Observational Data. Qeios. 

https://doi.org/10.32388/P7MMGR 

[40] Abbasian, M., Abedian, S., Agrawal, P., 

Alqahtani, S., Alshammari, N., Alsheikh, N., 

Anand, S., Athey, K., Balasubramanian, R., Balki, 

I., Blei, D., Browne, O., Buhr, E., Chen, I. Y., 

Chen, P.-H. C., Chowdhury, R., Corey, K. E., 

Dalke, A. R., Dubasov, C., … Zou, J. (2024). 

Foundation metrics for evaluating effectiveness of 

healthcare conversations powered by generative 

AI. NPJ Digital Medicine, 7(1), 82. 

https://doi.org/10.1038/s41746-024-01074-z 

[41] Krishna, K., Ramprasad, S., Gupta, P., Wallace, B. 

C., Lipton, Z. C., & Bigham, J. P. (2024). 

GenAudit: Fixing Factual Errors in Language 

Model Outputs with Evidence. arXiv. 

https://doi.org/10.48550/arXiv.2402.12566 

[42] Anwar, U., Saparov, A., Rando, J., Paleka, D., 

Turpin, M., Hase, P., Lubana, E. S., Jenner, E., 

Casper, S., Sourbut, O., Edelman, B. L., Zhang, Z., 

Günther, M., Korinek, A., Hernandez-Orallo, J., 

Hammond, L., Bigelow, E., Pan, A., Langosco, L., 

... Krueger, D. (2024). Foundational Challenges in 

Assuring Alignment and Safety of Large Language 

Models. arXiv. 

https://doi.org/10.48550/arXiv.2404.09932 

[43] Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., 

López de Prado, M., Herrera-Viedma, E., & 

Herrera, F. (2023). Connecting the dots in 

trustworthy Artificial Intelligence: From AI 

principles, ethics, and key requirements to 

responsible AI systems and regulation. 

Information Fusion, 99, 101896. 

https://doi.org/10.1016/j.inffus.2023.101896 

[44] Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., 

& Qadir, J. (2023). Privacy-preserving artificial 

intelligence in healthcare: Techniques and 

applications. Computers in Biology and Medicine, 

158, 106848. 

https://doi.org/10.1016/j.compbiomed.2023.10684

8 

  

https://doi.org/10.48550/arXiv.2402.19473
https://doi.org/10.1038/s41746-023-00958-w
https://doi.org/10.1109/ACCESS.2024.3365979
https://doi.org/10.3390/biomedinformatics4020068
https://doi.org/10.3390/biomedinformatics4020068
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.1002/wps.20997
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.eng.2022.04.024
https://doi.org/10.48550/arXiv.2004.10964
https://doi.org/10.32388/P7MMGR
https://doi.org/10.1038/s41746-024-01074-z
https://doi.org/10.48550/arXiv.2402.12566
https://doi.org/10.48550/arXiv.2404.09932
https://doi.org/10.1016/j.inffus.2023.101896
https://doi.org/10.1016/j.compbiomed.2023.106848
https://doi.org/10.1016/j.compbiomed.2023.106848

