NEW DELHI2024

Innovation and digital transformation for a sustainable world

21-23 October 2024 New Delhi, India

Al-Driven Early Prediction of Eye Disorder

22 October 2024

Shailendra Sagar, Ministry of Communications, India Megha Agarwal JIIT , India

Session #5 Applications and services for sustainable development

Introduction

- What is DR and how it occurs [1]?
- What WHO says?
- Why detection is important [2]?
- What are issues with conventional methods?
- How AI can solve the problem?

Methodology

Fig. 1 Block diagram of the proposed method

Comparison

Example images from DR class \rightarrow

Example images from Normal class \rightarrow

Dataset

APTOS consists of retinal images captured by a fundus camera operated by Aravind Eye Hospital in a rural setting [7]. Among these images, 2930 were allocated to the training set, while 366 were designated for the validation and test set each. All images in the dataset have a resolution of 3216×2136.

Pre-processing

- To accommodate the requirements of CNN networks, all images are resized to a standard size of 224x224x3.
- Additionally, subtraction of the mean across all images from each image in the training dataset is done.

Convolutional neural networks (CNN)

Transfer learning is employed to finetune two distinct CNN networks, VGG16 and ResNet18 [8,9]. Since all these networks are pre-trained on the ImageNet dataset, customization of the classification layer is necessary to adapt them to our specific application.

CNN Training Parameters

- HYPER-PARAMETERS FOR TRAINING
 - o Batch Size 20
 - \circ Epochs 20
 - \circ Learning rate 0.0001
 - $\circ~$ Optimizer stochastic gradient descent

Feature selection

- Kruskal-Wallis (KW) test [10] is employed to identify the most significant features. This test serves to reduce dimensions and enhance classification performance in a non-parametric manner.
- KW test determines p-values. These p-values signify the probability of observing the data under the null hypothesis. Features with higher pvalues are considered less significant, whereas smaller p-values indicate rejection of the null hypothesis.
- In this study, features with p-values less than 0.05 are selected for further analysis.

Classification

 After feature selection, retinal images are classified using three machine learning classifiers, namely, k-nearest neighbor (kNN), decision tree (DT) and support vector machine (SVM).

Fig. 4 Accuracy versus feature length for modified VGG

Result and Discussion

 Table-I - Performance comparison of using different classifiers

Classifier	Accuracy (%)		
	Validation	Testing	
kNN	99.1	97.5	
DT	99.5	97.5	
SVM	99.9	98.4	

 Table-II - Performance comparison of Modified VGG16 and VGG16

Classifiers	Accuracy (%)	Precision (%)	Recall(%)	F1-score (%)
Modified VGG16	98.4	98.2	98.2	97.6
VGG16	97.3	98.1	95.8	97.0

Fig. 5 – Confusion matrix of SVM using test data.

Fig. 6 – Region of convergence (ROC) curve of SVM using test data.

Result and Discussion

Performance Comparison of Different Models

Methods	Accuracy (%)	
VGG16	97.3	
ResNet18	95.3	
Deshpande et al. [6]	81.6	
Lahmar et al. [3]	93.0	
Lahmar et al. [4]	88.8	
Kassani et al. [5]	83.0	
Proposed method	98.4	

Conclusion

- Leveraging transfer learning in medical image analysis, our study presents a refined VGG16 network tailored for DR detection, integrating a feature selection technique.
- Through meticulous parameter tuning and feature selection, our approach achieves a notable performance boost.
- Notably, our modified VGG16 network outperforms both the standard VGG16 and ResNet18 networks, attaining an impressive accuracy of 98.4% on a benchmark DR dataset.
- This underscores the potential of our approach in enhancing automated DR detection systems for clinical use.
- The boom in telecommunication network and enhanced data rate owing to 5G and 6G technology, AI can further enhance tele-ophthalmology services, making eye care more accessible, especially in remote areas

References

- [1] S. Zhu, C. Xiong, Q. Zhong, Y. Yao, Diabetic retinopathy classification with deep learning via fundus images: A short survey, IEEE Access 12 (2024).
- [2] Y. Yang, Z. Cai, S. Qiu, P. Xu, A novel transformer model with multiple instance learning for diabetic retinopathy classification, IEEE Access 12 (2024) 6768–6776.
- [3] C. Lahmar, A. Idri, On the value of deep learning for diagnosing diabetic retinopathy, Health and Technology 12 (2021) 1–17.
- [4] C. Lahmar, A. Idri, Deep hybrid architectures for diabetic retinopathy classification, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 11 (2) (2023) 166–184.
- [5] S. H. Kassani, P. Hosseinzadeh Kassani, R. Khazaeinezhad, M. Wesolowski, K. Schneider, R. Deters, Diabetic retinopathy classification using a modified xception architecture, 2019.
- [6] G. Deshpande, Y. Govardhan, A. Jain, Machine learning-based diabetic retinopathy detection: A comprehensive study using inceptionv3 model, in: ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), 2024, pp. 994–999.

References

- [7]DiabeticretinopathydetectionAPTOSdataset,https://www.kaggle.com/competitions/aptos2019-blindness-detection.
- [8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv 1409.1556 (09 2014).
- [9] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
- [10] A. Vargha, H. D. Delaney, The Kruskal-Wallis test and stochastic homogenity, Journal of Educational and Behavioral Statistics (1998) 170–192.

Thank youk

Literature Survey

- [1] S. Siddarth, S. Chokkalingam, Densenet 121 framework for automatic feature extraction of diabetic retinopathy images, in: 2024 International Conference on Emerging Systems and Intelligent Computing (ESIC), 2024, pp. 338–342.
- [2] R. Chandra, S. Tiwari, S. S. Kumar, S. Agarwal, Diabetic retinopathy prediction based on CNN and alexnet model, in: 2024
 14th International Conference on Cloud Computing, Data Science Engineering (Confluence), 2024, pp. 382–387.
- [3] M. Farag, M. A. Fouad, A. T. Abdel-Hamid, Automatic severity classification of diabetic retinopathy based on densenet and convolutional block attention module, IEEE Access 10 (2022) 38299–38308.
- [4] S. Dhir, R. Bala, N. Goel, A. Sharma, Improved transfer learning approach for diabetic retinopathy screening, in: 2023
 10th International Conference on Signal Processing and Integrated Networks (SPIN), 2023, pp. 451–456.
- [5] A. Albelaihi, D. M. Ibrahim, Deepdiabetic: An identification system of diabetic eye diseases using deep neural networks, IEEE Access 12 (2024) 10769–10789.
- [6] M. Agarwal, A. Singhal, Fusion of pattern-based and statistical features for schizophrenia detection from eeg signals, Medical Engineering Physics 112 (2023) 103949.
- [7] A. Singhal, M. Agarwal, An automatic risk assessment system for sudden cardiac death using look ahead pattern, Multimedia Tools and Applications 83 (2023) 1–16. doi:10.1007/s11042-023-16548-7

Thank youk