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Introduction

 What is DR and how it occurs [1]?

 What WHO says?

 Why detection is important [2]?

 What are issues with conventional methods?

 How AI can solve the problem?



Methodology

Fig. 1 Block diagram of the proposed method



Comparison

Example images from Normal class 

Example images from DR class 



Transfer learning is employed to fine-
tune two distinct CNN networks,
VGG16 and ResNet18 [8,9]. Since
all these networks are pre-trained on
the ImageNet dataset, customization
of the classification layer is
necessary to adapt them to our
specific application.

• To accommodate the
requirements of CNN networks, all
images are resized to a standard
size of 224x224x3.

• Additionally, subtraction of the
mean across all images from each
image in the training dataset is
done.

.

Pre-processing Convolutional neural networks (CNN)

Dataset

APTOS consists of retinal images captured by a fundus camera operated by

Aravind Eye Hospital in a rural setting [7]. Among these images, 2930 were

allocated to the training set, while 366 were designated for the validation

and test set each. All images in the dataset have a resolution of

3216×2136.



CNN Training Parameters

 HYPER-PARAMETERS FOR TRAINING

o Batch Size 20

o Epochs 20

o Learning rate 0.0001

o Optimizer stochastic gradient descent



Feature selection

 Kruskal-Wallis (KW) test [10] is employed to identify the most

significant features. This test serves to reduce dimensions and enhance

classification performance in a non-parametric manner.

 KW test determines p-values. These p-values signify the probability of

observing the data under the null hypothesis. Features with higher p-

values are considered less significant, whereas smaller p-values

indicate rejection of the null hypothesis.

 In this study, features with p-values less than 0.05 are selected for

further analysis.



Classification

 After feature selection, retinal images are classified using three

machine learning classifiers, namely, k-nearest neighbor (kNN),

decision tree (DT) and support vector machine (SVM).

Fig. 4 Accuracy versus feature length for modified VGG



Table-I - Performance comparison of using different classifiers

Result and Discussion

Table-II - Performance comparison of Modified VGG16 and VGG16



.

Fig. 5 – Confusion matrix of SVM
using test data.

Fig. 6 – Region of convergence

(ROC) curve of SVM using test data.

Result and Discussion



Result and Discussion

 Performance Comparison of Different Models



Conclusion

 Leveraging transfer learning in medical image analysis, our study

presents a refined VGG16 network tailored for DR detection, integrating

a feature selection technique.

 Through meticulous parameter tuning and feature selection, our

approach achieves a notable performance boost.

 Notably, our modified VGG16 network outperforms both the standard

VGG16 and ResNet18 networks, attaining an impressive accuracy of

98.4% on a benchmark DR dataset.

 This underscores the potential of our approach in enhancing automated

DR detection systems for clinical use.

 The boom in telecommunication network and enhanced data rate owing

to 5G and 6G technology, AI can further enhance tele-ophthalmology

services, making eye care more accessible, especially in remote areas
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