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ABSTRACT

Cryptographically Relevant Quantum Computers (CRQCs)
are no longer hypothetical; they present significant
challenges to current IT infrastructure by potentially
breaking existing encryption schemes within minutes.
This paper introduces an innovative and efficient
method for achieving quantum-resistant encryption through
lattice-based cryptography. We specifically tackle the
challenge of encrypting extremely small units of data, such
as a single letter or a single-bit message, by constructing
a multidimensional lattice. Our proposed technique
leverages the Short Vector Problem (SVP) in lattice-based
cryptography and incorporates the Learning with Errors
(LWE) methodology for data encryption and decryption. We
demonstrate the feasibility and robustness of this approach
using a real-time messaging application that provides
quantum-resistant end-to-end encryption. Our work has the
potential for deployment in strategic applications, securing
information from the "harvest now, decrypt later" threat, even
in the presence of quantum technologies.
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1. INTRODUCTION

In today’s rapidly evolving digital landscape, the security of
sensitive information faces unprecedented threats, especially
with the advent of quantum computing. Traditional
cryptographic algorithms, such as the widely used
RSA (Rivest-Shamir-Adleman) public key encryption, are
encountering formidable challenges. The emergence of
quantum computing, with its unparalleled computational
power, poses a significant risk to the reliability of
these conventional encryption schemes. Cryptographically
Relevant Quantum Computers (CRQCs) can effortlessly
break existing algorithms, thereby undermining data security.
In response to this urgent need, the scientific community
initially focused on lattice cryptography because
cryptographic constructions based on lattice designs
came with security proofs derived from worst-case
lattice problems. Ajtai and Dwork [8] proposed the first
lattice-based encryption scheme, which was later refined and
streamlined by introducing the concept of the Learning With
Errors (LWE) problem. The LWE problem, an intermediate

problem asymptotically at least as hard as some common
worst-case lattice problems, proved relatively easy to use
in cryptographic constructions, representing a significant
advancement [1].

1.1 Related Work

The National Institute of Standards and Technology (NIST)
has approved four quantum-resistant algorithms. Notably,
Kyber [9], a Key Encapsulation Mechanism (KEM) based
on lattice-based cryptography and the Modular Learning
with Errors (MLWE) problem, targets the GapSVP problem
[1]. Other lattice-based algorithms include Crystal-Dilithium
[21], SABER [15], and NTRU [20]. Kyber is preferred
for its efficiency in secure communication and resistance
to quantum attacks, thanks to its use of Number Theoretic
Transforms (NTT) and noise during ciphertext generation,
which complicates attacks like BKZ [19], LLL reduction,
BKW, and primal attacks [16].
Oded Regev’s work [17] was pivotal in proving the quantum
hardness of the Learning With Errors (LWE) problem and
Shortest Vector Problem (SVP), underpinning the security of
these lattice-based methods. Efforts to update the Signal
protocol [13] and the Messaging Layer Security (MLS)
protocol developed by the Internet Engineering Task Force
(IETF) [13] for end-to-end secure messaging are ongoing but
not yet completed.

1.2 Our Contribution

In this work, we introduce a lattice-based encryption
algorithm designed to resist quantum attacks, inspired by the
Learning With Errors (LWE) scheme and the Shortest Vector
Problem (SVP). By integrating Oded Regev’s encryption
methods with techniques from Kyber, we developed a new
ciphertext generation approach. Our algorithm optimizes
public key storage by generating the key matrix from a seed
and two vectors, reducing storage and transmission overhead
while enhancing security through increased ciphertext noise.
We have implemented this algorithm in a server-client
model for end-to-end quantum-resistant communication.
The messaging application we are developing utilizes a
CCA-secure public key encryption (PKE) scheme. Unlike
the typical approach of exchanging a symmetric key via
a quantum-safe Key Encapsulation Mechanism (KEM) like
Kyber, and then encrypting the message, our method directly
encrypts the message using public key cryptography. This
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approach simplifies key management, eliminates the need for
an additional symmetric key exchange, and reduces potential
vulnerabilities, making it suitable for applications where
overhead and complexity are critical concerns.
Our algorithm has demonstrated strong performance in both
encryption and decryption. We’ve focused on reducing
ciphertext size and optimizing multiplication complexity,
aiming for a time complexity of𝑂 (𝑛 log 𝑛) rather than𝑂 (𝑛2).
This ensures both efficiency and security in establishing a
highly secure communication channel.
Lastly, we present use cases for our messaging
solution, showing its applicability in secure governmental
communications, financial transactions, and private
messaging, where quantum-resistant security is essential.

2. PRELIMINARIES

2.1 Notations

The set of integers is denoted by Z,Zq represents the finite
field of cardinality q and its elements are represented by the
integers in the interval [−[ 𝑞2 ],

𝑞

2 ]. 𝐵(𝑛) denotes an encoded
array of n integers like {𝑎1, 𝑎2, 𝑎3...., 𝑎𝑛} each integer takes
4 bytes each makes the value range of 0 to 232−1. D denotes
the Gaussian distribution and D𝜎 with standard deviation
𝜎. Here, 𝑥 ←− 𝜒 denotes the set of x belongs from the
distributed error terms generated which is denoted by 𝜒.
Pr(𝑋) denotes the Probability of 𝑋.B𝑘

𝑛 denotes an array of 32
bits representing the ASCII value for a character.
Extendable Output Function (XOF) is a cryptographic
primitive that takes a seed as input and produces an output of
any desired length. It’s like a versatile cryptographic tool that
can generate data according to specified distributions. Let’s
say we have a seed 𝑠𝑒𝑒𝑑 and we want to use XOF to create
matrices and vectors. We start by initializing XOF with the
seed seed, and then we use it to generate the matrices and
vectors [22]. For example, we can generate a matrix 𝐴 by
calling XOF with a specific seed seed𝐴, and similarly, we
can generate a vector 𝑏 by calling XOF with a seed seed𝑏.
Let seed be the seed used by the XOF, a variants of SHA
(secure hashing algorithm)-256 and SHA-128 pseudo number
generators in these functions which give us a hash value of
a definite length. To generate a matrix 𝐴, we call XOF with
seed seed𝐴:

𝐴← XOF (seed𝐴)

Similarly, to generate a vector 𝑏, we call XOF with seed seed𝑏:

𝑏 ← XOF (seed𝑏)

The process is deterministic, meaning that for a given seed,
XOF will always produce the same output. However, in
practice, XOF may use random oracles to achieve this
determinism while statistically approximating the desired
distribution.
The G function that when we send the 𝐴.𝑠 + 𝑒 and 𝑠_𝑡
combine the function output the results as stored in 𝑝_𝑡 as(∑256

𝑖=0 𝐴 · (𝑠𝑖 − 𝑠𝑠𝑡𝑖 )
)

so that the redundant lattice dimensions
which was chosen randomly from 256 dimensions will not the

be added in the resultant p_t which form the public key.
H function is used in the decryption algorithm where it takes
the ciphertext and uses it to provide the absolute difference
between the ciphertext matrix value and the value that came
from putting s in those equations in ciphertext with redundant
dimensions and then we check the probability that it is less
than 𝑞

4 or not for decoding the bits.

2.2 Gaussian Distribution

As Regev [1] demonstrates a quantum reduction from
worst-case lattice issues to LWE with Gaussian error, given
arbitrarily many LWE samples, the Gaussian distribution is
the default error distribution for classical LWE.
Definition. Let D𝜎 be the Gaussian distribution with
standard deviation 𝜎. The rounded Gaussian distribution
function DR𝜎 is defined as follows:
For any 𝑥 ∈ R, the sample 𝑦 fromDR𝜎 is obtained by rounding
𝑥 to the nearest integer and adding a sample from D𝜎 .
In mathematical notation:

𝑦 = ⌊𝑥 + 𝑧 + 0.5⌉
where 𝑧 is a sample from D𝜎 . If X follows a Gaussian
distribution then the rounded Gaussian of 𝑋𝑍 will be

Pr(𝑋Z = 𝑁) =
∫ 𝑁−1/2

𝑁+1/2
𝑔𝜇,𝜎 𝑑𝑥

In the following 𝜇 = 0.
Goal. In here we have to find the distribution of 𝑋Z𝑞 = 𝑋Z
mod q.

Pr(𝑋Z𝑞 = [𝑎]) = Pr(𝑋Z = 𝑎 + 𝑘𝑞) for some 𝑘 ∈ Z

∑︁
𝑘∈Z

∫ 𝑎+𝑘𝑞−1/2

𝑎+𝑘𝑞+1/2
𝑔0,𝜎 (𝑥) 𝑑𝑥 =

∫ 𝑎−1/2

𝑎+1/2
𝑓𝜎,𝑞 (𝑥) 𝑑𝑥

Where

𝑓𝜎,𝑞 (𝑥) : 𝑥 →
∑︁
𝑘∈Z

1

𝜎
√
2𝜋

exp
−(𝑥 + 𝑘𝑞)2

2𝜎2

2.3 LWE definition

Learning With Errors (LWE) is a fundamental problem in
lattice-based cryptography and serves as the basis for many
encryption schemes and cryptographic protocols[1][3][4].
It involves the challenge of distinguishing between noisy
information and random noise in a set of equations. terms 𝑒𝑖 .
Notation. Let 𝜒 be the rounded gaussian mod q and 𝑒𝑖 ←− 𝜒.
Definition. 𝑞 > 0 be a modulus and 𝑚, 𝑛 > 0. Now given
m samples of such equations of n dimesnions in the form of
ai, < ai, si > +ei where ai is uniform at random in Z𝑛𝑞 and
𝑒𝑖 ←− 𝜒. Find the secret 𝑠 ∈ Z𝑛𝑞

The LWE can be formulated more compactly as a
matrix-vector equation:

𝑋 · 𝑠 + 𝑒 = 𝑘 mod 𝑝
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where:
• 𝑋 is a known matrix with rows corresponding to

coefficients 𝑥𝑖 .

• 𝑒 is a vector of error terms 𝑒𝑖 .

• 𝑘 is a vector of known values 𝑘𝑖 .
The LWE problem is challenging because the error terms 𝑒𝑖
are typically drawn from a random distribution, making it
difficult to distinguish between the true solution and random
noise. The LWE’s security relies on the hardness of solving
this problem, even when given multiple noisy equations. In
practical lattice-based cryptography, LWE is used to build
secure encryption schemes such as Ring-LWE, which is a
variant of LWE, and many other cryptographic primitives.
The security of these schemes is based on the assumption
that solving the LWE problem is computationally infeasible,
even for powerful adversaries.
Hardness. The LWE problem is difficult for several reasons.
First of all, even quantum algorithms don’t seem to be
able to help because the most effective LWE algorithms
operate in exponential time. Second, since it is a logical
extension of the Learning Parity with Noise (LPN) issue,
it has been well explored and is generally accepted to be
a challenging topic in learning theory. Furthermore, as
LPN involves the issue of decoding from random linear
binary codes, any advancement in algorithmic techniques
for LPN is likely to result in advances in coding theory. It
is known that LWE is hard because of several assumptions
about the worst-case difficulty of typical lattice problems
like SIVP (the shortest independent vectors problem) and
GapSVP (the decision version of the shortest vector problem)
[1][4]. More specifically, the conventional assumption that
GapSVP is difficult to estimate within polynomial factors
underlies difficulties when the modulus q is exponential. The
hardness is based on somewhat less common (but still quite
credible) assumptions for polynomial moduli q, which is the
more important setting for cryptographic applications. To
be more precise, this means that either GapSVP or SIVP are
difficult to approximate within polynomial factors, even with
a quantum hint, or that GapSVP is difficult to estimate even
when provided with a short basis [3].

3. ALGORITHM AND SPECIFICATIONS

The algorithm is based on the LWE encryption scheme which
was introduced by Odded Regev. We adopted the approach
[10] for the generation of the public matrix A and used the
SVP problem to make the public key and secret key. The main
difference in creating the lattice dimensions in our algorithm
and others is that we are using the concept of reduced
dimensions which means we would not take ’k’ dimensions
in counter to calculate the resultant lattice equations and
that would work as our second secret key. It also increases
the complexity of lattice reduction techniques. Similar to
other post-quantum cryptography (PQC) algorithms in which
parameters play an important role in their security strength.
We have also defined a set of parameters in it. The algorithm
is parameterized by n, m, k, q, 𝛾.

n m k 𝛾 q
256 150 25 5 3907

• The parameter 𝑛 is set to 256 to utilize a plaintext
size of 256 bits, ensuring 256 bits of entropy for key
encapsulation. A lower 𝑛 reduces noise and affects
security.

• The parameter 𝑞 is chosen to ensure a negligible
probability of decryption failure, similar to Kyber, where
a prime number around 212 defines a good security
parameter.

• The parameter𝑚 represents the number of LWE samples
chosen to resist BKW and BKZ attacks with LLL
reduction techniques.

• The parameter 𝛾 balances security and computational
timing, determining the number of equations selected
from the public key for a single bit with modulo 𝑞.

• The parameter 𝑘 is the number of equations chosen from
𝑚 samples in the public key matrix. A subset of 𝑘 rows,
when combined, produces different equations to encrypt
a single bit.

3.1 Key Generation

At the beginning, several arrays (sk, sk_t, pk, pk_t, a) and
a prime number (prime) are initialized. These arrays are
used to store secret keys, public keys, and other parameters
used in the encryption and decryption processes. The
"generateUniqueRandomNumbers" function is defined to
generate a specified number of unique random numbers
within a given range. This function is used to generate
secret keys, public keys, and other random values required
for encryption by SHAKE-128 in its standard variant and
AES-256 in CTR mode in its 90s variant as XOFs to generate
pseudorandom output for cryptographic operations. The
secret_key_gen and public_key_gen functions are defined to
generate secret keys (sk, sk_t) and public keys (pk, pk_t)
based on random numbers generated using the XOF.

Algorithm 1 KeyGen(): Key generation

1: 𝜎, 𝜌 ← {0, 1}256 and 𝛼← {0, 1}𝑘
2: 𝑎 ∼ 𝐵(𝑛) := XOF(𝜎)
3: 𝑝 ∼ 𝐶 (𝑘) := XOF(𝛼)
4: 𝑠 ∼ 𝐷 (𝑛) := XOF(𝜌)
5: 𝑒 ∼ D𝑚

𝜎

6: 𝐴 ∼ 𝑅𝑛×𝑚
𝑞

7: for 𝑖 = 0 to 𝑘 do
8: for 𝑗 = 0 to 𝑛 do
9: 𝐴[𝑖] [ 𝑗] := (𝑝𝑘 [𝑖]𝑜𝑟𝑎[ 𝑗])

10: end for
11: end for
12: 𝑝_𝑡 ∼ 𝑃(𝑚) := G((𝐴.𝑠 + 𝑒), 𝑠_𝑡)
13: return ((𝑝𝑘 := (𝜎, 𝛼, p_t) , sk:= (s, s_t))

In the provided code, the equation

𝐴 · 𝑠 + 𝑒 = 𝑝_𝑡
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Figure 1 – Schematic of the proposed quantum-resistant encryption for secure end-to-end communication.

represents the encryption process. Where,

• 𝐴 is a matrix used in the encryption process made from
pk, a, where each row of 𝐴 is generated with the help of
boolean OR operation of elements between a and pk.

• 𝑠 is the secret key vector made up of both 𝑠k and
𝑠𝑘_𝑡 , where 𝑠𝑘_𝑡 represents the dimensions that are
excluded from multiplication with matrix 𝐴 to calculate
the resultant vector present in 𝑡. Excluding dimensions
in 𝑠_𝑡 increases the hardness to reduce the lattice for
short vectors.

• 𝑒 is an error vector, which introduces randomness and
ensures that the encryption process is secure its range is
being calculated by the Gaussian function.

• 𝑝𝑘_𝑡 is the encrypted text vector which is then
compressed and sent as a public key(pk).

3.2 Encryption and Cipher Text

The encryption function is defined to encrypt a given
message. It iterates over each character of the message,
converts it to binary representation, encrypts each bit using
the public key, and generates encrypted text based on the
encryption algorithm. Fig. 1 shows the schematic of the
proposed quantum-resistant encryption for secure end-to-end
communication. The code iterates over each character of
a given message (s), converts it to binary representation,
encrypts the binary representation using the encryption
function, and stores the encrypted text in the vector array.
The plain text “m” then first we have to convert into binary
so “M” = “1 0 1 1 0 0 1”, Where M is an array containing
the binary bits for a message m. Now, each of its bits will
randomly take any “𝛾” number of rows of “A” and “pk_t”
and add them to form a new set of equations. So, here let’s
suppose at random we chose any number of rows then for the
1st bit the equation will be. And since this bit is equal to “1”
we will also add in the RHS side with the resultant a q/2 extra
term and then modulo with q else 0 will be added.

Algorithm 2 Enc(pk, m): Encryption

1: 𝑀 ← B32
𝑚

2: 𝑑𝑖𝑚 ← 𝐷 (𝛾) := 𝛽
𝛾

𝑘

3: 𝑎 ← XOF(𝜎) and 𝑝 ← XOF(𝛼)
4: 𝑢 ∼ 𝑅𝑀×𝑛

𝑞 and 𝑣 ∼ 𝑅𝑀
𝑞

5: for 𝑙 = 0 to size of 𝑀 do
6: 𝑢[𝑙] = ∑

𝑖∈𝑑𝑖𝑚
∑256

𝑗=0 (𝑎[ 𝑗] or 𝑝 [𝑙])
7: 𝑣 [𝑙] = ∑

𝑖∈𝑑𝑖𝑚 𝑝_𝑡 [𝑖]𝑞 + 𝑀 × [𝑞/2]
8: end for
9: return 𝑐 := (𝑢, 𝑣)

3.3 Decryption

The decryption algorithm attempts to recover the original
text from the cipher text (c:= (u, v)). Since the cipher text
contains two matrices, each row of matrix u contains the
coefficients of n dimensions for each bit and matrix v contains
the modulo resultant for each of the single bits. So, The
decryption algorithm takes each row separately and passes
through function H, in which the dot product of a secret
vector with each row is done and the redundant dimensions
results are removed (∑𝑛

𝑗=0 𝑠.𝑢[𝑖] [ 𝑗] −
∑𝑘

𝑗=0 𝑠[𝑠_𝑡] .𝑢[𝑖] [ 𝑗]).
Then we consider the difference between the result we got
with the corresponding row of the v vector. Then check the
probability if the difference is less than 𝑞

4 to get the bit 0 or
1. Combining all the bits we get our original text message.

Algorithm 3 Dec(sk = s, c = (u , v)): Decryption
1: 𝑚 := 𝐵(size of u)
2: for 𝑖 = 0 to size of 𝑢 do
3: 𝑚 [𝑖] = 𝑖 𝑓 (𝑃𝑟 [𝐻 (𝑣 [𝑖] −∑256

𝑗=0 𝑠.𝑢[𝑖] [ 𝑗])] < [𝑞/2]) :=
0

4: else 𝑚 [𝑖] = 1
5: end for
6: return m

4. CORRECTNESS AND SECURITY

Correctness: In the absence of errors within the LWE
samples provided, the inner product between the error 𝑒 =
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⟨𝑎, 𝑠⟩ and the secret 𝑠 would result in either 0 or
⌊ 𝑞
2

⌋
,

depending on the encrypted bit. Consequently, the decryption
process remains consistently accurate. Thus, decryption
errors only arise if the summation of error terms across all
secrets exceeds 𝑞

4 . Given that we sum at most 𝑚 normal
error terms, each with a standard deviation 𝛼𝑞, the standard
deviation of the sum remains at most

√
𝑚𝛼𝑞 <

𝑞

log 𝑛
. An

analysis confirms that the likelihood of such a normal variable
surpassing 𝑞

4 is negligible.
Now, let’s delve into the security proof, demonstrating
the system’s resilience according to the LWE assumption.
Assume vulnerability to chosen plaintext attacks, signifying
that for a non-negligible portion of secrets 𝑠, there exists an
efficient method to accurately predict the encrypted bit, given
a public key (𝑎𝑖 , 𝑏𝑖)𝑚𝑖=1 selected from the LWE distribution
and encryption of a random bit as described earlier, with a
probability of at least 1

2 +
1

poly(𝑛) . Given our parameter set
and algorithm, many attacks appear futile.
Core-SVP Hardness: The SVP hardness depends upon
how much time to solve for the given parameter set more
likely the number of equations, modulus size, and the
number of dimensions. Various lattice reduction techniques
allow to production of the shortest vector in exponential
time complexity. No such known algorithm now even with
the help of quantum algorithms can solve a particular LWE
problem in polynomial time. Blum, Kalai, and Wasserman’s
work [23] yields a far more intriguing approach that takes
just 2𝑂 (𝑛) samples and time. The method works by breaking
down the n coordinates into 1

2 𝑙𝑜𝑔(𝑛) blocks of size
2𝑛/𝑙𝑜𝑔(𝑛) each, and then building S recursively by finding
collisions in these blocks. This is based on a clever idea that
finds a small set S of equations (let’s say, of size n) among
2𝑂 (𝑛) equations, such that

∑
𝑆 𝑎𝑖 is, let’s say, (1, 0,..., 0).

By summing those equations, we get a very noisy estimate
for the first coordinate of s, but a typical computation still
reveals a bias of around 2𝜃 (𝑛) toward the correct value.
Therefore, by repeating the preceding technique just 2𝑂 (𝑛)
times, we have a good likelihood of recovering the value of
s1 and thus all of the s.
Blum et al. approach is the most well-known technique for
solving the LWE problem. The best-known algorithms for
lattice problems [24], [25], take 2𝑂 (𝑛) time, which is closely
connected to this.

Primal attack: The primary attack involves creating a
distinct SVP instance from the LWE problem and applying
BKZ to solve it. We investigate the minimum block
dimension b that BKZ needs to find the unique solution.
Given LWE instance (A, b = As+e) then one make a lattice
Λ = { x ∈ Z𝑚+1 (A|𝐼𝑚 | − 𝑏)𝑥 =0 mod q } and then it
will generate a distinct or unique solution v = (s, e, 1)
of norm 𝜆 = 𝜁

√
𝑘𝑛 + 𝑚 where the 𝜁 shows the standard

deviation[25][16][12].
Success condition. With our parameter set at first it will be
very difficult to make an accurate Λ or the basis matrix

𝐵 =


𝐼𝑛×𝑛 A’ 0

0𝑚−𝑛×𝑛 𝑞𝐼 (𝑚−𝑛)×(𝑚−𝑛) 0
𝑐𝑇 𝑡

 ∈ Z(𝑚+1)×(𝑚+1)

Since we have used redundant dimensions our c matrix
which is (A.s + e) doesn’t show the exact results for all the
dimensions rather it shows the lattice of (n - M) dimensional
lattice with error so that the original c matrix is hard to
retrieve which will affect the lattice reduction technique to
guess the correct set of vector and for even with the efficient
algorithm it would take more than O(𝑛2) to search for each
possibility. Even if it guessed the dimensions and got some c
the condition of success will be Let 𝑒∗ be the projection of 𝑒
orthogonally onto the first 𝑑−𝑏 vectors of the Gram-Schmidt
basis 𝐵∗.
BKZ-like algorithms will call an SVP oracle on the last block
of dimension 𝑏.
If 𝑒∗

𝑑−𝑏 is the shortest vector in that block, it will be found.
If 𝑒∗

𝑖
is the shortest vector for all projections up to 𝑑 − 𝑏, it

will “travel to the front”.
Assume ∥𝑒∗

𝑑−𝑏∥ ≈ 𝜎 ·
√
𝑏.

Applying the GSA, we expect the shortest vector to be found
in the last block to have a norm

∥𝑏∗𝑑−𝑏+1∥ = 𝛼𝑑−𝑏 · 𝛿0𝑑 · Vol(𝐵) 1𝑑 = 𝛿0−2(𝑑−𝑏) · 𝛿
0
𝑑 · Vol(𝐵) 1𝑑

= 𝛿02𝑏−𝑑 · Vol(𝐵) 1𝑑 .
Thus, we expect success if

𝜎 ·
√
𝑏 ≤ 𝛿02𝑏−𝑑 · Vol(𝐵) 1𝑑 .

And for the parameters, we numerically optimized it to
defend against these types of attacks. Our parameter set
allows security against BKZ attacks. The time complexity
for these attacks is still exponential but it’s one of the
best-known attacks to uSVP.

Side-channel attacks: The implementation of our algorithm
is such that side-channel attacks don’t seem much of a help in
tracing the modulo or any timing leakage. We implemented
it in such a way that there is a tight bound of timing and
is nearly a constant time. Even if the matrix generation
from the seed doesn’t leave any timing leakage, there would
be a case of leakage in modular reduction but it can be
easily modified by implementing the algorithm on the device.

Hybrid attacks: A hybrid attack that combines
Meet-in-the-Middle combinatorial search with lattice
reduction techniques, might compromise several algorithms.
The analysis of this approach is very challenging, and new
research indicates that it is frequently less competitive than
previously believed. As mistakes and secrets are not ternary
and scarce in our design, we see that this attack is particularly
pertinent in certain situations.

5. PERFORMANCE ANALYSIS

Indeed, the algorithm produces different encryption text
vectors for the same input each time it runs due to the use of
random variables. This property is crucial for the security of
cryptographic systems, as it ensures that even if an attacker
observes multiple ciphertexts of the same plaintext, they
cannot deduce any information about the original message
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Table 1 – Performance comparison of different algorithms

Algorithm Secret Key Size Public Key Size Ciphertext Size

Our Algorithm 1053 bytes 965 bytes 8799 bytes
Kyber768 2400 bytes 1184 bytes 1088 bytes
Kyber1024 3168 bytes 1568 bytes 1568 bytes
FRODO 11280 bytes 11296 bytes 11288 bytes
NTRU-scheme 1422 bytes 1140 bytes 1281 bytes

without knowledge of the secret key. The sizes of the keys also
plays a vital role in selecting the parameters. Table I shows the
performance comparison of different algorithms for different
sizes of the secret key, public key, and ciphertexts. It can be
inferred from Table I that the proposed algorithm uses much
smaller keys (both public and secret), however, ciphertext size
is slightly higher than other algorithms excluding FRODO.
We have taken the strings of various sizes in kilobytes (KB) of
different characters in length and ran our algorithm through
various processors. We took the average after “20 iterations”
of each test case and found this mean data. We have taken
256 randomized integers in our secret key and each time
calculated the encryption and decryption timings. The data
shown in Table II in seconds and we are expecting much
better results after further optimization. These are done on
the Ryzen7 4800h processor.

Size of plaintext Encryption Decryption
1 KB 0.02 sec 0.003 sec
4 KB 0.408 sec 0.06 sec
15 KB 1.757 sec 0.25 sec
31 KB 3.64 sec 0.518 sec
59 KB 7.44 sec 1.013 sec
118 KB 14.3 sec 1.976 sec

Table 2 – Time taken for encryption and decryption

Fig. 2 illustrates how the encryption and decryption time gaps
increase, indicating that the ciphertext computational time is
a little bit longer since we are doing O(n𝛾) for each bit. To
simultaneously minimize the size and temporal complexity,
we are optimizing this timing and attempting to decrease
it to O(log (n)𝛾). Also, we compress each coefficient of
the equations generated by the random seed so that fewer
bytes are being used in storage. Since the implementation
of the client-server model requires restrictions on the size
of messages sent at one time. That’s why it’s important to
compress the coefficients but accordingly, we have to consider
the parameters carefully so that security would not be affected.

6. IMPLEMENTATION

This section provides complete structure of our model of
end-to-end (E2E) communication channel via client-server
model and how we implemented it in the device. Along
with the reference implementation of the algorithm and the
required encoding of the algorithm in the PKE system for the
E2E channel.
As shown in Fig. 3, the implementation was done on a

Figure 2 – Time taken (in seconds) for encryption and
decryption for different sizes of plaintext (in KB)

client-server model. In which the sender and the receiver have
been connected to the devices which are indeed connected
with the server that has a database. A new user when comes
to the server and registers with the help of the algorithm in
the backend will be a unique public key and a private key will
be generated on the database for each of the users. The public
generated is in the form of of vector of vectors having three
vectors of pk_t, pk, a, working as a seed vector that can able
to generate the whole matrix A with the help of a and pk.
Now, for the generation of the cipher text from a plaintext that
a sender (client 1 in fig.) wants to send to the receiver (client
2 in fig.) the encryption algorithm (Algorithm 2) works in
the backend, firstly, it makes an API call to get the public key
from the database. Using the public key pk of the receiver
the senders create the cipher text Enc(pk) to get the cipher
text and send it back to the server and store it in the database
as in encrypted format. When the server realises there is
a change it makes a call back to the receiver’s end and the
API traces the change and reflects it to the receiver’s side.
Now, since we got the cipher text and now with the help of
Algorithm 3 (Decryption) the previously stored secret key at
the receiver’s end comes to use to decrypt this cipher text
using Dec(c, sk, sk_t)
The use of the local storage here is to keep the secret keys in it
with the help of cookies, we parse the sk and sk_t with cookie
tokens to the local storage. After that, we could access that
token form the backend and retrieve the secret keys out of that
which will able to decrypt the incoming messages and show
us in the chat box. Now, since everything is running smoothly
there is still an issue of storage of ciphertext since the text
size is about 0(nm) where the m denotes the number of bits
per character generally ’7’. So, it’s approx 1800 integers each
taking approx 8-12 bytes making an overall space of 7.2 KB
and for 250 such characters which is the current character
limit for our algorithm implementation in the chat server, it
comes to approx 1.8 MB which turns out to be a lot as of now.
So, to reduce this we are implementing a 𝑛𝑙𝑜𝑔𝑛 space size
algorithm which would encrypt multibit at the same time. To
reduce space it would also make the runtime lesser.
Further work on user and software interfaces and key
management systems may be necessary for encryption using
QKD devices to guarantee long-term access to encrypted
messages and also asynchronicity. The demand is presently
not being met by the key rates, particularly when it comes
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Figure 3 – Schematic of the proposed quantum-resistant encryption for secure end-to-end communication.

to the integration of the Quantum key distributions into
systems other than the site-to-site VPNs. This issue may
be resolved by deriving many keys from the original key
that QKD supplied. For instance, one may utilize a single
QKD key with keys that are generated for every message
transmitted between two fixed participants on the same day.
It could also go beyond the classical client-server model and
has many use cases such as a secure quantum channel for
the military or some esteemed organization. Since we are
successfully able to integrate it into the system and establish
secure communication between two parties. There can be
still some key exchanges and session chatting features which
we are introducing further.

6.1 Computational Complexity for Attacker

The difficulty of breaking an encryption scheme based on
Learning With Errors (LWE) is closely tied to solving
the Shortest Vector Problem (SVP) for the lattice defined
by the encryption parameters. As lattice dimensionality
increases, the computational complexity of solving SVP
grows exponentially, making it extremely challenging for
attackers. Randomly choosing dimensions for each bit
and adding random error terms during encryption further
increase complexity. The hardness of breaking an LWE-based
encryption scheme depends on lattice dimensionality, the
modulus used, and the number of random dimensions
chosen during encryption. Solving SVP in high-dimensional
lattices is believed to be exponentially complex, even for
powerful computers. In a client-server model, LWE-based
encryption secures encrypted chats stored in the database,
making decryption without keys extremely difficult due
to the complexity of solving SVP and the randomness
introduced. Brute-forcing through the more than 101200

possible combinations in LWE encryption makes chosen
ciphertext attacks (CCA) infeasible. Regev’s reduction shows
that a quantum solver for the LWE problem with certain
parameters can solve approximate versions of lattice problems
like SVP and SIVP over lattices of dimension 𝑛. However,

this reduction doesn’t imply that these lattice problems
are NP-Hard for linear approximation factors. Even if a
quantum solver for LWE worked for parameters very close
to 1, the resulting approximation factor for lattice problems
would still be greater than 𝑛. Currently, we lack proof
that these approximate lattice problems are NP-Hard for
linear approximation factors. Therefore, while a quantum
polynomial-time algorithm for LWE would place LWE
within BQP, it wouldn’t directly impact classical hardness
or NP-hardness questions. Such an algorithm would still
be a significant breakthrough. The approximate versions of
lattice problems aren’t known to be NP-Hard, and efficient
algorithms for solving them remain elusive.

7. CONCLUSION AND FUTURE WORK

The security of this lattice-based encryption scheme relies
on the difficulty of solving the Shortest Vector Problem
(SVP) in high-dimensional lattices, particularly when random
dimensions and error terms are introduced. The algorithm
generates a random basis, random dimensions, and random
errors for each bit, making it computationally infeasible for
an attacker to recover the secret key or decrypt the ciphertext
efficiently. However, the size and storage of ciphertexts
and messages impose restrictions on the length of messages
that can be sent at once. To address this, we are exploring
various transformations and researching methods to reduce
the ciphertext size to a logarithmic scale, possibly through
binary search algorithms. Additionally, we are investigating
techniques similar to the Number Theoretic Transform (NTT)
for optimizing matrix multiplications, which could enhance
performance without compromising security.
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