
BENCHMARKING MATRIX MULTIPLICATIONS FOR VARIABLE QUBIT SIZE AND
DEPTH

ABSTRACT

To emulate a quantum computation on a classical computer
i.e. the evolution of the unitary operations on the wave
function of the particle in quantum mechanics, we have to
perform unitary matrix and normalized vector multiplications
in the high-level programming languages of Python, C++,
Java, etc. Quantum Libraries already available perform the
matrix-vector multiplication in the backend using the numpy
libraries of Python like Qiskit or use a C++ wrapper to
further optimize the runtime it as in Qiskit-Aer Simulators.
Since a fully functioning fault-tolerant computer is decades
away, it is in our best interest to design new quantum
algorithms and develop accelerator test beds for Quantum
Emulations. All the quantum computer operations can be
emulated on a classical computer, with the only downside
being that the matrix multiplications scale up as 𝑂 (𝑁3) in
runtime. In contrast, the quantum computer scales it up
as 𝑂 (𝑛), where N = 2𝑛, where N is the matrix dimension,
where n is the number of qubits, so the runtime for quantum
emulations on the classical computer increases exponentially
with increase in number of qubits and increases linearly with
increase in number of depths, complexity wise. Though it is
not possible to change the exponential index, it is possible
to reduce the runtime for quantum emulations on classical
computers by use of GPU and Alveo Accelerator Cards, and
also code optimization on the software side like using a C++
wrapper. In this paper, we will benchmark the matrix-matrix
multiplications on HPC Accelerator Cards varying the qubit
size and the depth of the quantum circuit and provide a
universal mathematical equation for the runtime on the GPU
and Alveo Vector Cards for two variables of qubit size and
quantum circuit depth. So a theoretical limit on qubit size
and qubit depth exactly can be established for quantum
emulations on present classical supercomputers.

Keywords - Qiskit, Qubit, GPU, Alveo Accelerator Cards

1. INTRODUCTION

What is a Qubit? A Qubit is a quantum binary unit that
can take any normalized amplitude and the state for that can
be ’0’, ’1’, or ’0 + 1’ or ’0 - 1’, on a 0 and 1 basis, These
basis can be represented in the form of a column vector
with the size as [2𝑛, 1], where n is the number of qubits.
Now any quantum algorithm can be decomposed into a set
of universal quantum gates of 𝑈 (𝜃, 𝜙, 𝜓) and CNOT, which
can be represented as unitary matrices of 2x2 and 4x4 sizes
respectively. Now it is up to the coder on how one will code
the operations of quantum emulations as, i.e it can be done

Figure 1 – Cubic Exponential Curve for Runtime as the
number of qubits is increased for Quantum Emulations

as Kronecker Product between the 2x2 unitary gates, 4x4
CNOT gates matrices for all qubits at a particular depth and
then multiply the resultant unitary with the input column state
vector, or one can also follow the approach of unitary matrix
- Kronecker product and then state vector multiplication for
each depth. But here we are following the prior approach
of performing the matrix-matrix multiplications first and
then matrix-vector multiplications. Here the Kronecker
product requires the same time irrespective of the hardware
architecture, we will not perform the Kronecker product
on the CPU, GPU, and ALVEO, but rather perform and
benchmark the time for matrix-matrix multiplications by
varying the qubit size and the depth(1).
Emulation of Quantum Algorithms using FPGAs has been
done in (2) but in our work, Alveo card combines three
essential things: a powerful FPGA for acceleration, which
has high-bandwidth DDR4 memory banks, and connectivity
to a host server via a high-bandwidth PCIe Gen3x16 link.
This link is capable of transferring approximately 16 GiB of
data per second between the Alveo card and the host.
How does a qubit size relate to matrix size in emulations
on a classical processor using a quantum library(8)? The
answer is (2𝑛 ∗ 2𝑛) where n is the number of qubits, to
represent the superposition on a qubit or a unitary gate
operation on a qubit, we require a matrix size of 2x2 and
vector size of 2x1, which scales up exponentially as we
increase the number of qubits i.e the matrix size (2𝑛 ∗ 2𝑛)
and state vector size (2𝑛 ∗ 1). Once the code optimization
is done on the backend, then it is a hardware architecture of
the classical computation that needs to be changed to get the



Figure 2 – Runtime in units vs Quantum Circuit Depth
Complexity

performance enhancement, i.e. the GPU and the ALVEO
Cards i.e. HPC Cards on our end(3). In other research works,
CMOS circuit emulators for quantum computing have been
proposed (4), but these hardware implementations are not
yet commercially available. In the near term, using classical
computing hardware to emulate quantum computation
remains a viable solution.
The depth of the quantum circuit is equivalent to the
number of matrices used in the multiplications in quantum
emulations. The complexity of increasing the quantum
circuit depth i.e matrix multiplication depth is linear for
CPU, but how much is the slope of the runtime with
increasing depth lesser in the case of the GPU and ALVEO,
Also how does the complexity of the runtime vary with
increasing the number of qubits on ALVEO and GPU, which
is 𝑂 (𝑁3) for CPU? Even if the complexity of the runtime
remains the same on the accelerator cards the exact equation
of the complexity will have lower values on GPU and
ALVEO Cards owing to the customization of the hardware
architecture as per the application on ALVEO Cards and
parallelism on GPU Cards. This paper aims to benchmark
the how and exact mathematical equation for variable qubit
size and the quantum circuit depth, which can be further
used to establish a bottleneck for the qubit size and the
quantum circuit on a present supercomputer for quantum
emulations. Now let’s move on to the exact dataflow for
matrix multiplications on CPU, GPU, and ALVEO Cards(5).

A clear pictorial representation between the quantum
emulations and actual quantum circuits is shown in Fig. 3.

2. MATRIX MULTIPLICATION ON CPU

In CPU, first the data (Matrix elements) is loaded to the
cache L1 from CPU RAM(Random Access Memory) by
using multiple data buses for efficient parallel computation.
Once the required matrix elements are in the cache, they
can be loaded into CPU registers, which are small, fast
storage locations directly accessible by the CPU cores. The
CPU’s instruction decoder and execution units handle the

Figure 3 – Quantum Circuit and its Quantum Emulations are
Matrix-Vector and Matrix Matrix Multiplications

Figure 4 – Internal Architecture of CPU

loading of data from cache into registers. This process is
typically controlled by assembly-level instructions generated
by the compiler or software. Once the matrix elements are
loaded into CPU registers, the actual multiplication operation
can begin. The EPYC 7742 CPU features multiple cores,
each capable of executing instructions independently. These
cores can work in parallel, allowing for efficient processing
of matrix multiplication tasks. The CPU’s SIMD(Single
Instruction, Multiple Data) units can be leveraged for parallel
computation. SIMD instructions enable the execution of the
same operation on multiple data elements simultaneously,
which is beneficial for matrix multiplication. The CPU
executes instructions generated by the software or compiler to
perform the matrix multiplication algorithm. This involves
a combination of arithmetic operations(e.g., Addition and
Multiplication) and data movement instructions. Once the
matrix multiplication is complete, the result matrix is stored



back into CPU registers. Depending on the application’s
requirements, the results may need to be written back to
RAM. This involves a similar process to loading data from
RAM, where the CPU’s cache hierarchy is utilized to manage
data movement efficiently. For these operations, we use the
PYTHON library(numpy).

3. MATRIX MULTIPLICATION ON GPU

Figure 5 – Internal Architecture of GPU

We are using GPU RTX A4000 series in this series
first, we need to transfer the matrices from the system’s
RAM(main memory) to the GPU’s dedicated memory
known as Video RAM (VRAM). This transfer typically
involves using functions provided by GPU-accelerated
libraries like CUDA(Compute Unified Device Architecture)
or cuBLAS(CUDA Basic Linear Algebra Subprograms).
The CUDA programming model, for instance, provides
functions like ’cudaMemcpy()’ to transfer data between the
HOST(CPU) and device (GPU) memories efficiently. Matrix
multiplication on a GPU is typically implemented as a kernel
function, which is a small program executed in parallel
by many threads on the GPU(6). CUDA kernel function
specifically designed to perform matrix multiplication is
being used. Each thread in the GPU executes a portion on the
matrix multiplication operation in parallel. CUDA provides
grid and block structures to organize these threads into a grid
of thread blocks, which are then executed concurrently on the
GPU’s streaming multiprocessors(SMs). Once the matrices
are loaded into GPU memory and the matrix multiplication
kernel is working, the kernel is launched from the CPU.
This initiates parallel execution of the matrix multiplication

operation on the GPU. The number of threads per block
and the number of blocks per grid are determined based
on the size of the matrix and the GPU’s architecture to
achieve optimal parallelism. Each thread block is scheduled
onto an SM for execution. Within each SM, multiple
thread blocks can be processed concurrently, with each
block utilizing the SM’s resources efficiently, The CUDA
runtime manages the scheduling and execution of thread
blocks across the GPU’s SM, maximizing parallelism and
throughput. Once the matrix multiplication is complete,
the result matrix is transferred from GPU memory back
to CPU memory using functions similar to cudaMemcpy().
Overall, performing matrix multiplication on an RTX A4000
GPU involves leveraging its massively parallel architecture,
utilizing the CUDA programming model for kernel execution,
and efficiently managing data movement between the CPU
and GPU memories. This approach allows for significant
acceleration of matrix operations compared to traditional
CPU-based computations, especially for large matrices

4. MATRIX MULTIPLICATION ON ALVEO
ACCELERATOR CARD

Figure 6 – Internal Architecture of ALVEO

We have used the Alveo U55C accelerator card, this
accelerator card contains 16GB of High Bandwidth
Memory(HBM) of second generation to perform the required
mathematical operations. The Alveo can directly access
this memory for fast-chain command executions. The shell
sections shown in the figure is reserved by the Alveo card
to host functionalities like: PCIe control kernel, Xilinx
Run Time (XRT) driver, Status registers. The rest of the
Alveo outside shell is the user programmable region. In OS
userspace has two sections
1. ’My Software’ sections where we make or store the
software.
2. XRT section is the communication link between the Host



and the Alveo card.
The OS kernel has Xilinx Open Computing
Language(XOCL) for parallel programming on
Alveo(FPGA). The matrix multiplication is written in
a .cpp file, in a high-level programming language of
C++. This file is then compiled with the help of Vitis
compiler(V++) and after compilation, we get two files
mmult.xo (matrix multiplication) and vadd.xo (vector
addition) which are the kernels or functions defined in
the .cpp file, through which we create xclbin, which is
a lower-level machine language file, that consists of the
two definitions of mmult and vadd. This xclbin file is
used as an overlay file using the PYNQ library in Python
language where the matrices to be multiplied are defined
and the matrices to be multiplied are first reshaped as per
the shapes defined in .cpp file called as tiling of matrices
and then the matrices are ported on the ALVEO card using
the sync.to.device() function of the pynq library. Using the
mmult and vadd functions the matrix multiplications are
performed on the ALVEO card and then the result is ported
back to the Host Processor using the sync.from.device()
function of the overlay method of PYNQ library(7).

5. ARCHITECTURE SPECIFICATIONS AND
THEORETICAL EQUATIONS

5.1 CPU Architecture Specification

AMD EPYC 7742
Number of Cores - 64
RAM of Processor - 256 GB
Number of Threads - 64 cores * 2 threads/core = 128 threads
Base Clock Speed - 2.25GHz
FLOPS = 4608 GFLOPS (double-precision performance)

𝑡𝐶𝑃𝑈 = (2.1701 ∗ 10−4 ∗ 23𝑛 + (22𝑛 ∗ (2𝑛 − 1))) ∗ 𝑑 (1)

Here, 𝑛 is the number of qubits (i.e the matrix size will be
2𝑛), and 𝑑 is depth (number of matrices). The 𝑡𝐶𝑃𝑈 gives the
computational runtime for CPU at depth 1 and at any matrix
size.

5.2 GPU Architecture Specification

RTX A4000
Number of Cores - 6144
RAM of Processor - 16 GB
Number of Threads - 6,144 cores * 32 threads/core = 196,608
threads
Base Clock Speed - 1420MHz
FLOPS = 299.5 GFLOPS (double-precision performance)

𝑡𝐺𝑃𝑈 = (3.3388 ∗ 10−3 ∗ 23𝑛 + (22𝑛 ∗ (2𝑛 − 1))) ∗ 𝑑 (2)

5.3 Alveo Architecture Specification

ALVEO U55C
Look up tables (LUTs): 1304K LUTs.
Registers: It features 2,607K registers.
DSP Slices: The card includes 9,024 DSP slices.

RAM of Processor:16GB High Bandwidth Memory (HBM2).
Base Clock Speed - 300MHz
FLOPS = 500-600 GLOPS/SECOND (approximately)

𝑡𝐴𝑙𝑣𝑒𝑜 = ((1.6666∗10−3−2∗10−3) ∗23𝑛+(22𝑛∗ (2𝑛−1))) ∗𝑑
(3)

6. RESULTS

Experimental findings:
Runtime equations for 3architectures from curve fit

𝑡𝐶𝑃𝑈 = (3.1181 ∗ 10−9 ∗ 23𝑛 + (22𝑛 ∗ (2𝑛 − 1))) ∗ 𝑑 (4)

The coefficient a is independent of the matrix size and depth
in the case of CPU. This is evident from Figure 8, we plot the
runtime vs number of qubits for depth 11 and found that the
value of a is 3.12324502 ∗ 𝑒−09 which is almost equal to the
value obtained at depth 1.

Figure 7 – Performance of CPU

Figure 8 – Performance of CPU

The coefficient a in this case of GPU is dependent upon the
matrix size and depth in the case of GPU. At a particular
depth, the coefficient is different.
𝑡𝐺𝑃𝑈 from 0 to 8 Qubits

𝑡𝐺𝑃𝑈 = (5.44 ∗ 10−8 ∗ 23𝑛 + (22𝑛 ∗ (2𝑛 − 1))) ∗ 𝑑 (5)



𝑡𝐺𝑃𝑈 from 9 to 16 Qubits

𝑡𝐺𝑃𝑈 = (3.82∗10−14∗23𝑛+(22𝑛∗(2𝑛−1)))∗𝑑+1.8545 (6)

Figure 9 – Performance of GPU

𝑡𝐴𝑙𝑣𝑒𝑜 = (1.4093 ∗ 10−10 ∗ 23𝑛 + (22𝑛 ∗ (2𝑛 − 1))) ∗ 𝑑 (7)

The coefficient a in this case is independent of the matrix size
and depth in case of Alveo as well.

Figure 10 – Performance of Alveo card

In Table 1, we have given the performance sequence of all
three architectures. This table shows the comparison of
runtimes at a particular matrix size (i.e. at a given number of
qubits) at depth 1. Here, depth means the number of times
the matrices are getting multiplied together. We observe that
GPU is better in most of the cases and Alveo is better at a
few sizes (i.e. 8, 9, and 10). It is also worth mentioning
that at lower sizes CPU runtime is almost equal to GPU.
In Figure 11, we have plotted the computational runtime vs
increasing matrix size using the same data used in Table 1
to establish the performance sequence. Similarly, Figure 12
shows the computational runtime for each matrix size and
with increasing depth (from 1 to 21).
In Table 2, the performance sequence is given with increasing
depth. It is observed that in most of the cases (i.e sizes) the

Table 1 – Performance of CPU, GPU, and Alveo with
increasing qubit size for the fixed depth of 1

Qubits (𝑛) Performance Sequence
1 GPU, CPU, Alveo
2 GPU, CPU, Alveo
3 GPU, CPU, Alveo
4 GPU, CPU, Alveo
5 GPU, CPU, Alveo
6 CPU ≈ GPU, Alveo
7 GPU, CPU, Alveo
8 Alveo, CPU, GPU
9 Alveo, CPU, GPU
10 Alveo, GPU, CPU
11 GPU, Alveo, CPU
12 GPU, Alveo, CPU

13 onwards GPU, Alveo, CPU

GPU performs better than the other two architectures (CPU
and Alveo). But it is also worth mentioning the performance
behaviour at some sizes, for example at qubit size 8 (Table 2),
Alveo performed the best for the first time and CPU performed
better than GPU.
Now, let us look at Figure 13, it shows the computational
runtime versus depth of GPU and CPU (the Alveo runtime
has to be excluded because its runtime was in a different
range). At this qubit size (i.e 7), both of the architectures
performed equally good (note that the scaling of y-axis i.e the
time axis has been done because the runtime range is of order
106).
In Figure 14, we have plotted the performance of the
architectures vs depth, the Alveo is again better than CPU
and GPU, also GPU is better than CPU after 7 depths. But
at the same time, this trend will not followed after further
increasing the depth. This is evident if one extrapolates the
lines further.

Figure 11 – Performance of CPU, GPU, and Alveo with
increasing qubit at depth 1



Figure 12 – Runtime comparison of different qubit sizes with
depths (from 1 to 21)

Similarly, in Figure 15 we have plotted the performance of
the architectures(only for GPU and Alveo) vs depth for 10
qubits, we have to exclude the CPU data from this plot to
clearly show the crossover between Alveo and GPU. The
performance crossover occurred after 5 depths.

Figure 13 – GPU ≈ CPU (it is taking almost the same time )
for 7 qubits

Table 2 – Performance of CPU, GPU and Alveo with
increasing depth (from 1 to 21) for the given qubit size

Qubits(n) Performance
Sequence

Crossover depth of
two systems

1 GPU ≈ CPU, Alveo GPU ≈ CPU
2 GPU ≈ CPU, Alveo GPU ≈ CPU
3 GPU ≈ CPU, Alveo GPU ≈ CPU
4 GPU ≈ CPU, Alveo GPU ≈ CPU
5 GPU ≈ CPU, Alveo GPU ≈ CPU
6 GPU ≈ CPU, Alveo GPU ≈ CPU
7 GPU ≈ CPU, Alveo GPU ≈ CPU
8 Alveo, CPU, GPU No crossover

observed
9 Alveo, GPU, CPU Crossover observed

between CPU and
GPU after depth 7

10 GPU, Alveo, CPU Crossover observed
between GPU and
Alveo after depth 5

Figure 14 – Crossover observed between CPU and GPU after
depth 7 and for 9 qubits

Figure 15 – Crossover observed between GPU and Alveo
after depth 5 and for 10 qubits



7. CONCLUSION

In this paper, we were able to derive computation runtime
equations for each architecture. The performance curves
were obtained for CPU, GPU, and Alveo for any depth. This
method of deriving computational run time equations can be
useful in different applications such as building a quantum
simulator and training deep learning and machine learning
models. We also report that this kind of generalised equation
which can give computational runtime for any matrix size
and at any depth can be formulated in case of CPU and
alveo but in case of GPU (as the coefficient is dependent
upon the depth and size of the matrix multiplication). At
each matrix size, the runtime behavior is almost similar if
we keep increasing the depth. Similarly, if we fix the depth
and keep increasing the matrix size the runtime behavior
is different. Hence the universal computational runtime for
any architecture can be formulated for matrix multiplication
which can give experimental runtime. The crossover depths
between CPU and GPU, as well as GPU and Alveo were
identified and the performance sequence for different qubits
was established.

REFERENCES

[1] Kestur, Srinidhi, John D. Davis, and Oliver Williams.
"Blas comparison on FPGA, CPU and GPU." 2010
IEEE Computer Society Annual Symposium on
VLSI. IEEE, 2010.

[2] M. Aminian, M. Saeedi, M. S. Zamani and M. Sedighi,
"FPGA-Based Circuit Model Emulation of Quantum
Algorithms," 2008 IEEE Computer Society Annual
Symposium on VLSI, Montpellier, France, 2008, pp.
399-404, doi: 10.1109/ISVLSI.2008.43.

[3] Vestias, Mario, and Horácio Neto. "Trends of
CPU, GPU and FPGA for high-performance
computing." 2014 24th International Conference
on Field Programmable Logic and Applications
(FPL). IEEE, 2014.

[4] R. L. Smith and T. H. Lee, "Quantum Computing Gate
Emulation Using CMOS Oscillatory Cellular Neural
Networks," IEEE Transactions on Circuits and Systems
II: Express Briefs, doi: 10.1109/TCSII.2024.3397846.

[5] Betkaoui, Brahim, David B. Thomas, and Wayne
Luk. "Comparing performance and energy efficiency
of FPGAs and GPUs for high productivity computing."
2010 International Conference on Field-Programmable
Technology. IEEE, 2010.

[6] Asano, Shuichi, Tsutomu Maruyama, and Yoshiki
Yamaguchi. "Performance comparison of FPGA,
GPU, and CPU in image processing." 2009
international conference on field programmable logic
and applications. IEEE, 2009.

[7] Thomas, David Barrie, Lee Howes, and Wayne
Luk. "A comparison of CPUs, GPUs, FPGAs,

and massively parallel processor arrays for random
number generation." Proceedings of the ACM/SIGDA
international symposium on Field programmable
gate arrays. 2009.

[8] Arute, Frank, Kunal Arya, Ryan Babbush, Dave
Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas
et al. "Quantum supremacy using a programmable
superconducting processor." Nature 574, no. 7779
(2019): 505-510.


