
1

VIRTUAL YOGA TEACHER WITH AI MODEL FOR YOGA POSTURE CORRECTION

FOR GOOD HEALTH

Swapna Yenishetti1; Dr.Ganesh Karajkhede2; Lakshmi Panat 3

1,2,3Centre For Development of Advanced Computing

ABSTRACT

With the advent of preventive and promotive health in the

world, driven by the WHO’s Sustainable Development Goal

for Healthcare to ensure healthy lives and promote well-

being for all ages it is a necessity to develop Artificial

Intelligence driven tools for Yoga. Yoga is the art and

science of healthy living and has a history spanning

thousands of years. Hence there is genuine need of AI

model for Yoga posture correction, to reap the benefits of

practice of Yoga. Developing AI models for yoga posture

correction has the potential to enhance the experience for

yoga followers and acting as a Virtual Yoga teacher. In this

study, we are focusing on identification of 10 important

yoga poses performed by the user with the help of Pre -

trained Move Net model and transfer learning. Using such

deep learning algorithms, an individual can understand the

gap between current and ideal way of performing the

specific yoga asana, thus enabling correction in the yoga

pose. This process is to be completed in real-time and needs

to be interactive necessitating the usage of react.js library.

The system analyzes the difference between the actual and

ideal yoga pose and landmarks the image of human body

while performing the yoga pose with required correction.

Keywords – MoveNet, Transfer learning, Yoga Posture

Detection, Tensorflow Object Detection API, Deep Neural

Network

1. INTRODUCTION

The history of yoga is spanning thousands of years and

evolving through various cultural, religious, and

philosophical contexts. Archaeological evidence suggests

that yoga practices may have existed as far back as the

Indus Valley Civilization (around 3300–1300 BCE). It is

one of the most appreciated scientific contribution of India

to world.

The global yoga industry has experienced significant

growth in recent years, driven by increasing awareness of

health-wellness and popularity of mind-body practices.

According to market research, the yoga market was valued

at over $37 billion in 2020 and is projected to continue

growing in the coming years. The global yoga market size is

forecast to reach $66.2 billion by 2027 and is expected to

have a compound annual growth rate of 9.6% from 2021 to

2027.

Practicing yoga in wrong way can lead to various negative

effects on the body. It may include muscle injury, joint pain,

back pain, nerve compression, pressure on internal organs

leading to injury, breathing problems, psychological effects

etc. To avoid these negative effects, it's crucial to practice

yoga under the guidance of a qualified instructor. For

beginner or attempting advanced poses focusing on proper

alignment and breathing for a safe and effective yoga

practice.

Therefore, a need for a ‘Yoga Pose Detection’ algorithm

arises, that can check and correct yoga poses, while also

eliminating the need of human instructors. Taking

inspiration from the psychology of transfer of learning,

Transfer Learning is a section of Machine Learning that

focuses on gaining knowledge from one problem, and using

the knowledge in another similar problem. This has proven

to be a significant milestone in Reinforcement Learning. In

Yoga, since we don’t have to deal with motion, Yoga poses

have been proven to be an excellent example of image

classification. There are different pre-trained models that

can be used for Image Classification based on Transfer

Learning. The first approach used in this project was

ResNet34. Then other approaches such as VGG,

EfficientNet, Image Net were also explored. Although each

of these approaches had their individual benefits, they also

came with their own drawbacks. After evaluation and

comparison of different pre-trained models, MoveNet was

finalized and used in the project. Similarly we have

prepared and finalized dataset. After exploring existing

datasets of images, and benefits of the poses, we prepared a

custom data set consisting of following ten poses:

Bhujangasana, Garudasana, Halasana, Natarajasana,

Sukhasana, Makarasana, Savasana, Simhasana, Tadasana.

We intend to broaden the data set in the near future. By

integrating following features, the application aims to be a

catalyst for positive environmental, social, and economic

change, empowering individuals to embrace sustainable

living practices in their everyday lives.

2

1. The user interface is designed to be intuitive,

engaging, and visually appealing, ensuring ease of

navigation and accessibility for all users.

2. Features clear and concise information on

sustainable practices, making it easy for users to

adopt and incorporate these practices into their

daily routines.

3. The application leverages data analytics to provide

personalized recommendations and insights based

on user behavior and preferences.

4. Utilizes data-driven approaches to track and

measure the user's environmental and social

impact, providing feedback and rewards for

positive contributions.

5. Offers a wealth of educational resources such as

articles, videos, and interactive modules to raise

awareness and educate users about sustainable

yoga practices.

2. DATASETS

Yoga-82 is a new Dataset for Fine-grained Classification of

Human Poses. It is one of the largest data set which is used

to train the yoga classification techniques. The data set

contains a three-level hierarchy including body positions,

variations in body positions, and the actual pose names. We

present the classification accuracy of the state-of-the-art

convolutional neural network architectures on Yoga-82. We

also present several hierarchical variants of Dense Net in

order to utilize the hierarchical labels. On similar lines, we

have also created custom data set to train the model for

most common poses used by the public to demonstrate the

capability of the model.

3. LOGIC

Human pose estimation is a Computer Vision technique

used to predict a person’s body parts or joints position. This

can be done by defining the human body joints like wrist,

shoulder, knees, eyes, ears, ankles, arms, also called key

points in images and videos. Then, when a picture or video

comes in as input to the pose estimator model, it identifies

the coordinates of those detected body parts as output and a

confidence score indicating continuity of the estimations.

The MoveNet model is based on 3D estimation. The

operation takes place in a phase-wise manner like; first, the

RGB image is fed to the convolutional network as input,

then the pose model is applied to detect the poses, key

points, pose confidence score and key point confidence

score from the model outputs.

4. LANDMARKS

The landmarks of a human body used in this project are

nose, ears, eyes, shoulders, elbows, wrists, hips, knees, and

ankles. This gives us 17 landmarks, which will be used to

detect various poses by the model.

 Figure 1– Landmarks

5. OBJECTIVE AND METHODOLOGY

Objective: Development of DNN based detection model

using transfer learning technique to detect the yoga pose,

capture landmarks on real-time image or video to detect the

posture and integrate it in application to alert user for

correctness. The application shall also have encyclopedia on

yogasana’s with relevant information.

Methodology: For examination of different yoga poses,

pre-trained model MoveNet is used, which detects 17

landmarks on each images and creates csv file and prepared

train and test data. These manually created csv files are fed

to train the model for classification of poses. We have

developed react.js front-end application and used

tensorflow.js for importing the model. At first it shall detect

the pose and capture 17 landmarks from input image or

video for comparison with master landmarks. If current

posture reaches the accuracy of threefold above 70%

probability then, the colour turns to the green and also it

counts the time for holding the posture correctly and

notifies us by playing sound.

6. LITERATURE SURVEY

Due to the increase of stress in the modern lifestyle, yoga

has become popular throughout the world. Although

considered to be a great way to bring physical, mental, and

spiritual harmony, it can come with its own set of problems,

if not done properly. This gave rise to the need for Yoga

Pose Detection and Classification, to omit the necessity of a

human instructor. But, for an AI agent to behave like a

human, it is necessary to have a strong model to detect and

classify various yoga poses. OpenPose was the pioneer

project in the field of Landmark detection using Image

Processing. Using 18 landmarks detected on the human

body, it was able to achieve 78% accuracy in detecting the

yoga poses. PifPaf uses a Part Intensity Field (PIF) and a

Part Association Field (PAF) for body part limitation, and

relationship of body parts to shape full human stances,

respectively. This technique is dependent on the base up

3

approach for 2-D multi-individual human posture

assessment. This could not achieve accuracy beyond 76.4%.

Convolutional Neural Networks did achieve an accuracy

beyond 80%. It achieved an accuracy of 82.84%, by using

various layers of neurons along with techniques like Batch

Normalization, and Dropouts. This accuracy did not prove

to be sufficient for effective training of the agent. But, it did

become the base of many state-of-the-art learning

techniques. EfficientNet is the first technique to use CNN

along with the Scaling method. EfficientNet scaling method

uniformly scales network width, depth, and resolution with

a set of fixed scaling coefficients. It also transfers well to

other problems, and is shown to achieve accuracy on

CIFAR-100 (91.7%) and Flowers (98.8%), among other

datasets. But, when this learning was used on Yoga Poses, it

showed an accuracy of 85%. Our next approach was to

explore Deep Residual Learning. Since deeper neural

networks are more difficult to train, residual learning

framework makes it easier to train the model. This makes

the network easier to optimize, while also gaining accuracy,

because of the increased number of hidden layers. This

approach provides an accuracy of 70% on Yoga Dataset.

PoseNet MoveNet

PoseNet is profound

learning structure that

detects human postures by

distinguishing joint areas

in a human body. But,

even with this structure,

accuracy kept fluctuating

between 0.5 and 0.9,

depending on the pose

Using MoveNet, the model

detects 17 landmarks on

the image of the human

body. After detecting the

landmarks, the model

estimates the pose using

the distance of each

landmark from the centre

point of the image. An

average of each individual

landmark score is taken,

and considered to be the

score of that image

PoseNet is an older

generation pose estimation

model released in 2017. It

is trained on a standard

COCO dataset and

provides a single pose and

multiple pose estimation

variants.

MoveNet is the latest

generation pose estimation

model released in

2021.which is an ultra-fast

and accurate model that

detects 17 key-points of a

body. The model is offered

on TF Hub with two

variants, known as

Lightning and Thunder.

Lightning is intended for

latency-critical

applications, while

Thunder is intended for

applications that require

high accuracy.

The single pose variant can

detect only one person in

an image/video and the

multi pose variant can

detect multiple persons in

Both variants run faster

than real time (30+ FPS)

on most modern desktops,

laptops, and phones, which

proves crucial for live

an image/video. Both

variants have their own set

of parameters and

methodology. Single pose

estimation is simpler and

faster but required to have

a single person in an

image/video otherwise key

points from multiple

persons will likely be

estimated as being part of a

single subject

fitness, health, and

wellness applications.

MoveNet is a bottom-up

estimation model, using

heat-maps to accurately

localize human key-points.

PoseNet again has two

variants in terms of model

architecture that is

MobileNet v1 architecture

and ResNet50 architecture.

The MobileNetV1

architecture model is

smaller and faster but has

lower accuracy. The

ResNet50 variant is larger

and slower but it’s more

accurate. Both

MobileNetV1 and

ResNet50 variants support

single pose and multi-

person pose estimation.

The model returns the

coordinates of the 17 key

points along with a

confidence score.

This is a project of

TensorFlow, which

provides two variants,

Thunder and Lightning.

Since our project requires

high accuracy, we used

Thunder in this project.

For latency-critical

applications, Lightning is

considered to be a better

option. Using this model,

the model is capable of

achieving an accuracy

between 0.87 and 0.90.

Table 1– PoseNet and MoveNet

7. METHODOLOGY/TECHNIQUES

MoveNet architecture consists of two components: a feature

extractor and a set of prediction heads. The prediction

scheme loosely follows CenterNet, with notable changes

that improve both speed and accuracy. All models are

trained using the TensorFlow Object Detection API.

The feature extractor in MoveNet is MobileNetV2 with an

attached feature pyramid network (FPN), which allows for a

high resolution (output stride 4), semantically rich feature

map output. There are four prediction heads attached to the

feature extractor, responsible for densely predicting a:

Person center heat-map: predicts the geometric center of

person

Landmark regression field: predicts full set of key-points

for a person, used for grouping key-points into instances

Person regression field: predicts the location of all key-

points, independent of person instances

4

2D per-key point offset field: predicts local offsets from

each output feature map pixel to the precise sub-pixel

location of each key point

Figure 2– MoveNet Architecture

Although these predictions are computed in parallel, one

can gain insight into the model’s operation by considering

the following sequence of operations:

Step 1: The person center heat-map is used to identify the

centers of all individuals in the frame, defined as the

arithmetic mean of all key-points belonging to a person.

The location with the highest score (weighted by the

inverse-distance from the frame center) is selected.

Step 2: An initial set of key-points for the person is

produced by slicing the key point regression output from the

pixel corresponding to the object center.

Step 3: Each pixel in the key point heat-map is multiplied

by a weight which is inversely proportional to the distance

from the corresponding regressed key point. This ensures

that we do not accept key-points from background people,

since they typically will not be in the proximity of regressed

key-points, and hence will have low resulting scores.

Step 4: The final set of key point predictions are selected by

retrieving the coordinates of the maximum heat-map values

in each key point channel. The local 2D offset predictions

are then added to these coordinates to give refined

estimates. See the figure below which illustrates these four

steps. Since this is a center-out prediction – which must

operate over different scales

Figure 3– sequence of MoveNet Model Operations

8. DATASET PREPARATION

We started collecting various images of different Yoga

Poses from the Internet. After collecting a sufficient amount

of images, we categorized data into 10 different Yoga

Poses. For the sake of ease, we decided to manually split

our data into training and testing datasets. We classified the

collected images into sub-folders based on Poses. Then,

keeping in mind a ratio of 3:7 between testing and training

datasets, we split the entire data into two parts. Each part

have sub-folders corresponding to each data set.

9. DATA AUGMENTATION

Data augmentation is a set of techniques to artificially

increase the amount of data by generating new data points

from existing data. This includes making small changes to

data or using deep learning models to generate new data

points. Data augmentation is useful to improve performance

and outcomes of machine learning models by forming new

and different examples to train datasets. If the data set in a

machine learning model is rich and sufficient, the model

performs better and more accurately.

Figure 4– Data Augmentation

In this project, we mainly focused on cropping the images

such that the landmarks necessary for pose detection are

easy to visualize and analyze. We used a separate class

known as Pre-processor for Data Augmentation and

imported MoveNet pre-trained model for predicting the

landmarks. The landmarks of the images are written to a

5

CSV file for each individual image. Each CSV file is then

combined into a single file, for each folder (pose) given. A

function named ‘class_names’ is used to return the names of

the classes (poses). A final function named

‘all_landmarks_as_dataframe’ is used to combine all CSV

files corresponding to poses, into a single data frame. The

training data set CSV is split into Validation and Training

datasets, with the ratio of 3:17, to train the model.

Figure 5– Pre-process code snippet

10. MODEL DESCRIPTION

After data augmentation in CSV format, need to convert the

data into tensors for the model. We first computed the

various centre points relevant to the pose, using a function

‘get_center_point’. Our next step was to get a normalized

pose size. This is achieved by calculating distances of

landmarks from various centre points, and then taking an

average. Finally, the average is normalized to determine the

pose size. The landmarks are normalized depending on the

pose size. Since each landmark is denoted by coordinates

and score, the Input size initially is 51 (17 * 3) for our

model. We embed the input size, by expanding first,

normalizing landmarks based on coordinates, and then

flatten it to a size of 34. Due to this, our final input size for

the model is 34 (17 * 2). We introduced 3 hidden layers to

our model. Our first hidden layer consists of 128 neurons.

In the second and third layer, we go on reducing the number

of neurons by half the size of the previous layer. Thus the

second and third layers have 64 and 32 neurons,

respectively. At each layer, we are using ReLU as an

activation function. Along with the layers, we have added

Batch Normalization after each hidden layer. This is done

with the intention of normalizing the outputs of each hidden

layer, and tackling the problem of Vanishing Gradients.

This approach ensures that we can avoid the case of over-

fitting for various Yoga Pose Datasets

Figure 6– Model Description

11. CONFUSION MATRIX AND RESULT

VISUALIZATION

After training and compilation, this model gives a validation

accuracy of 0.87. The same model, when fit on the Testing

data set, gives an accuracy of 0.86. We also calculated and

plotted a Confusion Matrix to visualize the correct and

incorrect predictions in the Testing Dataset.

Figure 7– Accuracy

Figure 6– Confusion Matrix

As an extra measure to visualize the correct and incorrect

predictions, we added separate codes to investigate the

correct and incorrect predictions. The separation is done by

comparing y_true and y_predicted labels. For the images,

where the labels don’t match, they are shown as incorrect

predictions. The remaining images are shown as correct

predictions.

6

12. TENSORFLOW.JS IMPLEMENTATION

12.1 Requirements:

The conversion procedure requires a Python environment,

we need to keep an isolated one using pipenv or virtualenv.

 Importing a Keras model into TensorFlow.js is a two-step

process. First, convert an existing Keras model to TF.js

Layers format, and then load it into TensorFlow.js.

12.1.1 Step 1:

 Convert an existing Keras model to TF.js Layers format.

Use the Python API to export directly to TF.js Layers

format. As we have a Keras trained model in Python, we are

exporting it directly to theTensorFlow.js Layers format as

follows:

Figure 7– Step-1

12.1.2 Step 2:

 Load the model into TensorFlow.js by providing the URL

to the model.json file:

Figure 8– Step-2

Now the model is ready for inference, evaluation, or re-

training. For instance, the loaded model can be immediately

used to make a prediction: We have taken this approach, so

that pre-trained model can easily be hosted on any Cloud

Storage Platform.

This approach allows all of these files to be cached by the

browser (and perhaps by additional caching servers on the

internet), because the model.json and the weight shards are

each smaller than the typical cache file size limit. Thus a

model is likely to load more quickly on subsequent

occasions.

Figure 9– Use Model

7

Figure 10– Flow Chart of Application

13. RESULTS & CONCLUSION

As it can be seen in the screenshots below, at first our

model is detecting all the 17 landmarks on the body and

draw connections between them in white colour. Further, if

our current posture reaches the accuracy of threefold above

70% probability then, the colour turns to the green and also

it counts the time for holding the posture correctly and

notifies us by playing sound.

Figure 11– Screenshot of Application

We have exploited these different transfer learning models

(TL-VGG16, TLMobileNetV2, TL-InceptionV3, and TL-

Resnet50, TLInception-ResnetV2, TLEfficientNetB0, TL-

MoveNet Thunder) as shown in figure12. As we can see the

accuracies all other models are lower than Movenet

Thunder for classification task. Hence we can conclude that

the MoveNet Thunder is optimal model for the yoga

correcting system, based on evaluation metrics. As a result,

the TL-MoveNet model was selected as the optimal model,

showing validation accuracy of 87%, precision 0.87, recall

of 0.86, and validation loss of 0.4958.

Figure 12–Transfer learning models with accuracy

Possible benefits of developing AI model for yoga posture

correction are

1. Real-time Feedback: With an AI model,

practitioners can receive immediate feedback on

their posture as they perform yoga poses. This real-

time feedback allows them to make adjustments

and corrections on the spot, leading to more

effective and safer practice sessions.

2. Personalized Feedback: While attending a yoga

class, it can be challenging for instructors to

provide individualized feedback to each student

due to time constraints and class size. AI model

could offer personalized feedback tailored to each

practitioner's unique needs and abilities.

3. Continuous Improvement: AI models can be

trained on large datasets of yoga poses, allowing

them to learn from a wide range of examples and

continuously improve over time. This means that

the accuracy and effectiveness of the posture

correction AI can increase as more data is

collected and the model is refined.

4. Supplementary Learning Tool: Even for

individuals attending yoga classes with instructors,

AI model can serve as a supplementary learning

tool, providing additional support and guidance

outside of class hours.

5. Consistency: Human instructors may vary in their

teaching styles and levels of expertise, leading to

inconsistencies in the feedback provided to

students. AI model can provide consistent and

objective feedback, ensuring that practitioners

receive accurate guidance regardless of who is

teaching them.

6. Accessibility: Not everyone has access to a yoga

instructor or classes, especially in remote or

8

underserved areas. AI model could provide

guidance and feedback to individuals practicing

yoga on their own, making the practice more

accessible to a wider range of people.

Overall, AI model for yoga posture correction has the

potential to enhance the practice experience for yoga

enthusiasts, regardless of their level of experience or access

to traditional instruction.This application serves as a holistic

platform for individuals striving towards sustainable living,

providing the tools, resources, and community support

needed to make impactful and lasting changes.

14. FUTURE DIRECTIONS

Future directions on developing AI model for yoga posture

correction are

 Customizable Routines: Allow users to create

personalized yoga routines based on their fitness

levels, goals, and preferences.

 Adaptive Learning: Use machine learning to

adapt and suggest poses or routines based on user

performance and progress.

 Integration of NLP: Use natural language

processing for voice commands, allowing users to

interact hands-free with the virtual instructor

 Sensor Data: Integrate data from wearables (like

smartwatches) to monitor heart rate, calories

burned, and stress levels.

 Comprehensive Health Dashboard: Integrate

nutrition, sleep, and stress management tools to

offer a holistic health overview.

 Wellness Insights: Provide insights and

recommendations based on user data to enhance

overall well-being.

 Challenges and Rewards: Introduce gamified

elements like challenges, badges, and leaderboards

to motivate users.

 Progress Tracking: Offer detailed analytics and

reports on progress, flexibility improvements, and

time spent practicing.
 Research Emerging Technologies: Keep up with

advances in AI, machine learning, and health tech

to incorporate the latest features.

 Explore VR and AR: Investigate the potential of

virtual reality and augmented reality for immersive

yoga experiences.

 Iterative Development: Use feedback to

continuously improve the application, add features,

and fix issues.

REFERENCES

[1] https://ieeexplore.ieee.org/document/9310832

[2] https://www.researchgate.net/publication/3509310

97_Infinity_Yoga_Tutor_Yoga_Posture_Detection

_and_Correction_System

[3] https://tfhub.dev/google/movenet/singlepose/thund

er/4

[4] https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1932&context=etd_projects

[5] https://www.tensorflow.org/js/tutorials/conversion/

import_keras

[6] https://keras.io/about/

[7] https://blog.logrocket.com/tensorflow-js-an-intro-

and-analysis-with-

usecases8e1f9a973183/#:~:text=js%20is%20that%

20it%20allows,the%20Python%20version%20of%

20TensorFlow.

[8] https://www.tensorflow.org/hub/tutorials/movenet

[9] https://www.freecodecamp.org/news/reactjs-

basics-dom-componentsdeclarativeviews/#:~:

text=The%20DOM%20(Document%20Object%20Mod

el,%2C%20attributes%2C%20and%20so%20on.

[10] https://www.jsr.org/hs/index.php/path/article/view/

2140

[11] .https://www.npmjs.com/package/web-vitals

[12] .https://www.npmjs.com/package/@tensorflow-

models/pose-detection

