TUKALEIDOSCOPE NEW DELHI2024

Innovation and digital transformation for a sustainable world

21-23 October 2024 New Delhi, India

POTATO PLANT LEAF DISEASE DETECTION USING CUSTOM CNN DEEP NET: A

STEP TOWARDS SUSTAINABLE AGRICULTURE

Kyamelia, Roy¹; Subharthy, Ray²; Tapan Kumar, Pal³; Sheli, Sinha Chaudhuri²

¹Dept. of Electronics and Tele-Communication Engineering, Siliguri Govt. Polytechnic, Siliguri, West Bengal, India.

²Dept. of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, West Bengal, India. ³Kanyapur Polytechnic, Asansol, West Bengal, India.

Dr. Kyamelia Roy

Lecturer, Dept. of ETCE Siliguri Govt. Polytechnic

Session 1 – Technology, nextgeneration network architectures

POTATO PLANT LEAF DISEASE DETECTION USING CUSTOM CNN DEEP NET: A STEP TOWARDS SUSTAINABLE AGRICULTURE

Problem/Motivation :

Potato plants are vulnerable to various diseases, like **Early Blight** and **Late Blight**, which can significantly reduce crop yield and quality.

Solution:

- Detecting potato plant leaf diseases with Computer Vision (Using CNN) is a significant step towards sustainable agriculture.
- Early and accurate detection of diseases can help minimize crop losses, maximize yield, and reduce pesticide use *assisting farmers for a smart monitoring*

Objectives

- Leveraging Technology: This study aims to leverage advanced deep learning models to automate the process of identifying healthy and diseased Potato leaves.
- Models Implemented:

Customised 5-layer CNN 4-layer CNN Mobilenet

• **Comparative Analysis:** A comprehensive comparative analysis of these models is conducted to evaluate their performance in detecting and classifying potato leaf diseases, aiming to identify the most effective approach for enhancing agricultural practices.

Dataset (Plant Village)

- 3 categories: Early Blight, Late Blight, Healthy Leaves.
- Images used: 3000 samples for classification .
- Image dimensions: 256 x 256 x 3 pixels.

Late Blight

Healthy

Methodology

- Use of 3 CNN architectures: MobileNet,
 4-layer CNN, 5-layer custom CNN.
- Training split: 70% training and 30% validation.
- Detection: Faster R-CNN used for detecting potato leaf diseases.

Fig.1 Workflow diagram

5 Layer CNN (Best Model)

- 5 convolutional layers with feature extraction.
- Trained for 10 epochs with Adam optimizer and learning rate of 1e-3.

• Achieved validation accuracy: 97.16%.

Fig.2 5-layer custom CNN

Detection Model

- Faster R-CNN:
 - Integrated 5-layer CNN as backbone for object detection.
 - Detected 3 categories: Early Blight, Late Blight, Healthy leaves.
 - Intersection over Union (IoU): 0.76 at 0.6 threshold.

Fig.3 Architecture or FRCNN

Results

Classification:

Accuracy Comparison of 3 Models

5-layer CNN achieved a validation accuracy of **97.16%**

Mobilenet achieved a validation accuracy of **78.43%**

4-layer CNN achieved a validation accuracy of **73.21%**

Fig.4 Accuracy Curves for the 3 Models

epoch

Results

Classification:

Accuracy(Training) of the 5-layer CNN model with different optimizers on 10 epochs.

Adadelta

Adam

AdamW

RMSProp

SGD

Fig.5 Training Accuracy Comparison Curves for 5 Layer CNN with different optimizers

Results

Classification: Accuracy(Validation) Comparison of model with different optimizers

Fig.6 Validation Accuracy Comparison Curves for 5 Layer CNN with different optimizers

Results

Graph of Performance Metrics of the best model(5 layer Custom CNN) with 30 epochs.

Fig.7 Performance Metric graph of the best Model

Results

Confusion Matrix of 5 Layer custom CNN on the test data set

250

Fig.8 Confusion Matrix of 5 Layer CNN

Results

Classification Accuracy Comparison of 5 Layer CNN model with different optimizers

Table 1: Accuracy Comparison Curves for 5 Layer CNN with different optimizers

Model (with 10 epochs)	Optimizer	Training Accuracy (%)	Validation Accuracy (%)	
5-layers CNN	Adadelta	35.76	35.65	
	SGD	35.89	38.89	
	AdamW	66.946	75.28	
	RMS Prop	67.92	78.49	
	Adam	95.89 (97.16 after 30 epochs)	96.73 (97.17 after 30 epochs)	

Results

All Losses of the different models

- Mobilenet
- 4_layer_Conv
- 5_layer_Conv(Best Model)

Fig.9 All Losses of the different models

Results

Detection:

IoU(Intersection over Union) Curves of 5 Layer CNN model with different optimizers

• Best value of 0.78 with a threshold of 0.6

Fig. 10 IoU Curves for 5 Layer CNN with different optimizers

Results

Classifier Loss Comparison

Objectness Loss Comparison

Regression Box Loss Comparison

Table 2: Loss and IoU Comparison of the 3 considered backbone architecture

Backbone CNN Architecture	Accuracy	Loss_box_reg	Loss_Classifier	Loss_objectness	Loss_rpn_box_reg	IoU
4_layer_cnn	73.21	1.137	0.0698	0.017	0.0089	0.653
5_layer_cnn	97.16	0.0415	0.0581	0.00052	0.0057	0.7845
Mobilenet	78.43	0.924	0.0671	0.013	0.0432	0.648

Results

Detected Sample Output Images

Early Blight

the scorre is 0.9844064712524414

Healthy

the scorre is 0.9425102472305298 -

Late Blight

Discussions

Key Findings

• Model Performance:

- The 5-layer custom CNN, trained for 30 epochs, was the best-performing model and was integrated into the Faster R-CNN (FRCNN) detection model for identifying diseased potato leaves.
- The 5-layer CNN outperformed other models in detection accuracy, and its IoU comparison across different optimizers and classifier models confirmed its superiority.
- Impact of Data Augmentation:
 - The use of data augmentation techniques significantly improved model performance by balancing the dataset and enhancing feature diversity.
 - Augmentation led to a more generalized model capable of better handling variations in realworld scenarios.

Societal Impacts

- Increased Efficiency for Farmers: Early and accurate disease detection reduces labor costs and time for farmers, enabling them to make better-informed decisions.
- Support for Sustainable Agriculture: The integration of Al and computer vision supports sustainable farming methods, helping conserve resources like water and soil.
- Economic Growth in Agriculture: Implementing advanced technologies in agriculture can drive economic growth, creating opportunities for innovation and job creation in rural areas.
- Global Scalability: The technology can be adapted to different crops and regions, making it a versatile tool for farmers worldwide. 21/10/2024

Conclusions

- Highlights the potential of smart agriculture through the integration of computer vision and deep learning for automating the detection of potato leaf diseases.
- The custom 5-layer CNN model achieved a validation accuracy of 97.16%, demonstrating its effectiveness in detecting diseased potato leaves with Adam optimizer.
- Al and computer vision enhance **smart agriculture** by automating crop disease detection, promoting **sustainable farming** leading to environmentally responsible practices. 21/10/2024

References

- [1] K. Roy, S. S. Chaudhuri, J. Frnda, S. Bandopadhyay, I. J. Ray, S. Banerjee, and J. Nedoma, "Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet," IEEE Access, vol. 11, pp. 14983-15001, 2023.
- [2] C. İ. Sofuoğlu and D. Birant, "Potato plant leaf disease detection using deep learning method," Journal of Agricultural Sciences, vol. 30, no. 1, pp. 153-165, 2024.
- [3] V. P. Gaikwad and V. Musande, "Plant leaf damage detection using convolution neural network models," in AIP Conference Proceedings, vol. 2822, no. 1, November 2023.
- [4] J. Pasalkar, G. Gorde, C. More, S. Memane, and V. Gaikwad, "Potato leaf disease detection using machine learning," *Current Agriculture Research Journal*, vol. 11, no. 3, 2023.
- [5] M. A. Islam and M. H. Sikder, "A deep learning approach to classify the potato leaf disease," Journal of Advances in Mathematics and Computer Science, vol. 37, no. 12, pp. 143-155, 2022.
- [6] A. Bangal, D. Pagar, H. Patil, and N. Pande, "Potato leaf disease detection and classification using CNN," International Journal of Research Publication and Reviews, vol. 2, no. 5, pp. 1-5, 2021.
- [7] D. Kothari, H. Mishra, M. Gharat, V. Pandey, M. Gharat, and R. Thakur, "Potato leaf disease detection using deep learning," Int. J. Eng. Res. Technol., vol. 11, no. 11, 2022.

References

- [8] M. A. R. Nishad, M. A. Mitu, and N. Jahan, "Predicting and classifying potato leaf disease using k-means segmentation techniques and deep learning networks," Procedia Computer Science, vol. 212, pp. 220-229, 2022.
- [9] N. E. M. Khalifa, M. H. N. Taha, L. M. Abou El-Maged, and A. E. Hassanien, "Artificial intelligence in potato leaf disease classification: a deep learning approach," in Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges, 2021, pp. 63-79.
- [10] A. Arshaghi, M. Ashourian, and L. Ghabeli, "Potato diseases detection and classification using deep learning methods," Multimedia Tools and Applications, vol. 82, no. 4, pp. 5725-5742, 2023.
- [11] A. Singh and H. Kaur, "Potato plant leaves disease detection and classification using machine learning methodologies," in IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012121, 2021.
- [12] <u>https://www.kaggle.com/datasets/abdallahalidev/plant</u>village-dataset

Thank youk