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Problem/Motivation :
Potato plants are vulnerable to various diseases, like Early Blight and Late Blight,
which can significantly reduce crop yield and quality.

Solution:

» Detecting potato plant leaf diseases with Computer Vision (Using CNN) is a
significant step towards sustainable agriculture.

» Early and accurate detection of diseases can help minimize crop losses, maximize
yield, and reduce pesticide use assisting farmers for a smart monitoring
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Objectives
©)

« Leveraging Technology: This study aims to leverage advanced

deep Iearning. models to automate the process of identifying =
healthy and diseased Potato leaves. SN
« Models Implemented:  BRVe
Customised 5-layer CNN E{q@ =
4-layer CNN
Mobilenet

« Comparative Analysis: A comprehensive comparative analysis of
these models is conducted to evaluate their performance in
detecting and classifying potato leaf diseases, aiming to identify the
most effective approach for enhancing agricultural practices.
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e 3 categories: Early Blight, Late

Blight, Healthy Leaves.

* Images used: 3000 samples for Early Blight Late Blight

classification .

* Image dimensions: 256 x 256 x 3

pixels.

Healthy
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e Use of 3 CNN architectures: MobileNet, /

Training Model

4-layer CNN, 5-layer custom CNN.

B

e Training split: 70% training and 30%

|/

validation.
CNN Models
e Detection: Faster R-CNN used for Detected output
\Training Data /
detecting potato leaf diseases.
Fig.1 Workflow diagram
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* 5 convolutional layers with

feature extraction.

* Trained for 10 epochs with
Adam optimizer and learning
rate of le-3.

* Achieved validation accuracy: 97.16%.
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Fig.2 5-layer custom CNN
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 Faster R-CNN:

* Integrated 5-layer CNN as backbone

for object detection.

* Detected 3 categories: Early Blight,

Late Blight, Healthy leaves.

* Intersection over Union (IoU): 0.76 at

0.6 threshold.
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Accuracy

— 4 layer
—— 5 layer /

—— mobilenet

Classification: o

Accuracy Comparison of 3 Models /\/

5-layer CNN achieved a validation accuracy of
97.16%

Mobilenet achieved a validation accuracy of
78.43%

4-layer CNN achieved a validation accuracy of %0
73.21%

0 2 4 §] 8
epoch

Fig.4 Accuracy Curves for the 3 Models
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Classification: o

Accuracy(Training) of the 5-layer
CNN model with different
optimizers on 10 epochs.

Adadelta v
Adam *
AdamW 0
RMSProp

SGD
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Fig.5 Training Accuracy Comparison Curves for 5 Layer CNN
with different optimizers
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_ 100

Classification:
Accuracy(Validation) Comparison of
model with different optimizers ’
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Fig.6 Validation Accuracy Comparison Curves for 5 Layer CNN

with different optimizers
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J
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Fig.7 Performance Metric graph of the best Model
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Confusion Matrix of 5 Layer
custom CNN on the test data
set
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Fig.8 Confusion Matrix of 5 Layer CNN
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Table 1: Accuracy Comparison Curves for 5 Layer CNN with
different optimizers

Classification Accuracy Comparison Modd Training Validafion
. (with 10 Optimizer Accuracy Accuracy
of 5 Layer CNN model with epochs) %) %)
different optimizers Adadelta 35.76 35.65
SGD 35.89 38.89
5 fagers AdamW 66.946 75.28
CNN RMS Prop 67.92 78.49
95.89 96.73
Adam (97.16 after 30 | (97.17 after 30
epochs) epochs)
ITUKALEIDOSCOPE
NEW DELHI2024

21/10/2024



15™ITU ACADEMIC CONFERENCE

all_losses
2.00 — moblinet
. \ — 4 layer_conv
All Losses of the different models 7~ ~_ — Slayer cony |
I . ~

 Mobilenet 150 ~_

1.25 "‘“*-‘___H
*4 layer_Conv g8 —
* 5 layer_Conv(Best Model) 075

0.50

0.25 \_____________

0 rl 4 6 8
epochs

Fig.9 All Losses of the different models
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Detection:

loU(Intersection over Union)
Curves of 5 Layer CNN model with
different optimizers

e Best value of 0.78 with a threshold of

0.6

o =
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Fig. 10 loU Curves for 5 Layer CNN with different optimizers
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Comparison of various losses

loss_classifier loss_box_reg
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Table 2: Loss and loU Comparison of the 3 considered backbone
architecture

Backbone

CNN Accuracy | Loss_box _reg | Loss_Classifier | Loss_objectness | Loss_rpn box reg| IoU
Architecture
4 layer cnn | 73.21 1.137 0.0698 0.017 0.0089 0.653
5 layer cnn | 97.16 0.0415 0.0581 0.00052 0.0057 0.7845
Mobilenet 78.43 0.924 0.0671 0.013 0.0432 0.648
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Detected Sample Output Images
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Key Findings

« Model Performance:

* The 5-layer custom CNN, trained for 30 epochs, was the best-performing model and was
integrated into the Faster R-CNN (FRCNN) detection model for identifying diseased potato
leaves.

* The 5-layer CNN outperformed other models in detection accuracy, and its loU comparison
across different optimizers and classifier models confirmed its superiority.

« Impact of Data Augmentation:

* The use of data augmentation techniques significantly improved model performance by

balancing the dataset and enhancing feature diversity.

* Augmentation led to a more generalized model capable of better handling variations in real-
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* Increased Efficiency for Farmers: Early and accurate
disease detection reduces labor costs and time for farmers,
enabling them to make better-informed decisions.

» Support for Sustainable Agriculture: The integration of Al
and computer vision supports sustainable farming
methods, helping conserve resources like water and soil.

« Economic Growth in Agriculture: Implementing advanced
technologies in agriculture can drive economic growth,
creating opportunities for innovation and job creation in
rural areas.

» Global Scalability: The technology can be adapted to
different crops and regions, making it a versatile tool for

farmers worldwide.
21/10/2024
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* Highlights the potential of smart agriculture through
the integration of computer vision and deep
learning for automating the detection of potato leaf
diseases.

* The custom 5-layer CNN model achieved a
validation accuracy of 97.16%, demonstrating its
effectiveness in detecting diseased potato leaves
with Adam optimizer.

* Al and computer vision enhance smart agriculture by
automating crop disease detection, promoting
sustainable farming leading to environmentally

responsible practices.
21/10/2024

ITUKALEIDOSCOPE

NEW DELHI2024




15™ITU ACADEMIC CONFERENCE

[1] K. Roy, S. S. Chaudhuri, J. Frnda, S. Bandopadhyay, 1. J. Ray, S. Banerjee, and J. Nedoma, "Detection of tomato leaf diseases
for agro-based industries using novel PCA DeepNet," IEEE Access, vol. 11, pp. 14983-15001, 2023.

[2] C. i. Sofuoglu and D. Birant, "Potato plant leaf disease detection using deep learning method," Journal of Agricultural
Sciences, vol. 30, no. 1, pp. 153-165, 2024.

[3] V. P. Gaikwad and V. Musande, "Plant leaf damage detection using convolution neural network models," in AIP Conference
Proceedings, vol. 2822, no. 1, November 2023.

[4] J. Pasalkar, G. Gorde, C. More, S. Memane, and V. Gaikwad, "Potato leaf disease detection using machine learning,"
*Current Agriculture Research Journal*, vol. 11, no. 3, 2023.

[5] M. A. Islam and M. H. Sikder, "A deep learning approach to classify the potato leaf disease," Journal of Advances in
Mathematics and Computer Science, vol. 37, no. 12, pp. 143-155, 2022.

[6] A. Bangal, D. Pagar, H. Patil, and N. Pande, "Potato leaf disease detection and classification using CNN," International
Journal of Research Publication and Reviews, vol. 2, no. 5, pp. 1-5, 2021.

[7] D. Kothari, H. Mishra, M. Gharat, V. Pandey, M. Gharat, and R. Thakur, "Potato leaf disease detection using deep learning,"
Int. J. Eng. Res. Technol., vol. 11, no. 11, 2022.

ITUKALEIDOSCOPE

NEW DELHI2024

21/10/2024 @



15™ITU ACADEMIC CONFERENCE

[8] M. A. R. Nishad, M. A. Mitu, and N. Jahan, "Predicting and classifying potato leaf disease using k-means segmentation
techniques and deep learning networks," Procedia Computer Science, vol. 212, pp. 220-229, 2022.

[9] N. E. M. Khalifa, M. H. N. Taha, L. M. Abou El-Maged, and A. E. Hassanien, "Artificial intelligence in potato leaf disease
classification: a deep learning approach," in Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and
Challenges, 2021, pp. 63-79.

[10] A. Arshaghi, M. Ashourian, and L. Ghabeli, "Potato diseases detection and classification using deep learning methods,"
Multimedia Tools and Applications, vol. 82, no. 4, pp. 5725-5742, 2023.

[11] A. Singh and H. Kaur, "Potato plant leaves disease detection and classification using machine learning methodologies," in
IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012121, 2021.

[12] https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset

ITUKALEIDOSCOPE

NEW DELHI2024

i’,\
21/10/2024 \-"


https://www.kaggle.com/datasets/abdallahalidev/plant




