14TH ITU ACADEMIC CONFERENCE **ICUKALEIDOSCOPE** ACCRA2022

A Framework for the design, implementation and evaluation of a multi-variant Augmented Reality application

Sophie Westfahl, Dany Meyer-Renner, Antoine Bagula

7-9 December 2022 Accra, Ghana

Sophie Westfahl

University of Applied Sciences Neu-Ulm, Germany

Session 2 – Augmented reality systems: design and implementation Paper 2.1.

Multi-variant Augmented User Manual Industrial AR

Multi-variant Augmented User Manual

- Same producer, different models
- In combination with variation elements = 100s of variants \rightarrow 100s of user manuals?

Outline

- 1. Motivation and Challenges
- 2. Methodology
- 3. Cycle 1: Fundamental Approach for model-based AR
- 4. Cycle 2: Framework for handling multiple models and variants
- 5. Cycle 3: Evaluation of the final Prototype
- 6. Summary

Motivation and Challenges

- Augmented Reality is one of the key technologies of the **fourth Industrial Revolution** (4IR)
- AR is an **innovative and competitive** way of presenting information and enhancing the customer's experience
- In automotive industry, customerspecific variations has been standard and must be implemented as efficiently as mass production which also includes an efficient creation of instruction material

- Scarcity of fundamental best practices and frameworks for the **industrial AR** sector
- Framework for the design and efficient implementation of AR applications with **multiple models and variants**
- Scarcity in evaluation approaches of model-based AR applications

M. Hüllenkremer, "Erfolgreiche Unternehmen arbeiten mit Produktkonfiguratoren/Companies boost success with product configurators," Industrie Management, Publisher, Location, vol. 19 no. 1, pp. 37-40, 2003.

Methodology

Based on Design Science Research method according to Oesterle et al.

H. Oesterle, J. Becker, T. Hess, D. Karagiannis, H. Krcmar, P. Loos, P. Mertens, A. Oberweis, and E. Sinz, "Memorandum zur gestaltungsorientierten Wirtschaftsinformatik, Zeitschrift für betriebswirtschaftliche Forschung", vol. 6 no. 62, pp. 664–672, 2010.

Methodology

Real world (car) \rightarrow Abstraction (train)

Cycle and Prototype	1. Cycle Technology Prototype	2. Cycle Multi-variant prototype	3. Cycle Final prototype
Applied and tested on	3D printed train	Train + multiple wagons e.g	Real product
Evaluation Focus	Object tracking	Performance of multi- variant handling	Usability (System Usability Scale)

CYCLE 1: Technology Prototype

Implementation

- 3D Models are transformed into a **Vuforia Model Target** (MT)
- Import of MT to Unity and development of prototype: AR content as child object of MT
- Building the application

\rightarrow Object tracking \checkmark

Please select the correct Train order:

CYCLE 2: Multi-variant Prototype

Design

- MT with AR content is stored remotely as Asset Bundle
- MT dataset stored remotely
- Download to the application on demand during runtime
- Implementation for endless number of MTs possible

* Mapping is kept simple by file name mapping

** including Exception Handling

Implementation

- Each MT and dataset is stored on a virtual server
- User selects models, only these are downloaded from the server
- After selection, all datasets are downloaded
- MTs with AR content (green sphere) are **temporarily** downloaded in each scene

→ Dynamic download of MTs √, All MTs are detected √

Evaluation of Performance

- Major actions were tracked with a time stamp during runtime
- Results are given by time but are not compared to other frameworks or applications because there is no reference
- For the given use case, results are acceptable and reasonable for the User

line	XCode Console output		
1	14:35:14.39 Vuforia Initialized		
2	14:35:15.46 Entering Start scene		
3	14:35:29.56 Components selected.		
4	14:35:30.09 Entering Loading Scene		
5	File saved at: /var/mobile/Containers/Data/Application/Documents		
	Vuforia/Lok.xml		
6	File saved at:/Vuforia/Lok.dat		
7	File saved at: /Vuforia/Wagon1.xml		
8	File saved at: /Vuforia/Wagon1.dat		
9	File saved at: /Vuforia/Wagon2.xml		
10	File saved at: /Vuforia/Wagon2.dat		
11	14:35:30.77 Entering AR Scene 1		
12	Requesting bundle at http://www.westfahlsophie.com/Lok-IOS		
13	Creating dataset: Vuforia/Lok.xml/Lok		
14	14:35:30.83 Target: - EMPTY - NO_POSE - NOT_OBSERVED		
15	Loaded: ModelTarget (4)(Clone)		
16	14:35:31.43 Target: Lok NO_POSE - NOT_OBSERVED		
17	14:35:31.48 [arget: Lok NO_POSE -RECOMM_GUIDANCE]		
18	14:35:32.41 Target: Lok TRACKED - NORMAL		
19	14:35:34.52 Target: Lok NO_POSE - NOT_OBSERVED		
20	UnloadTime: 7.174000 ms		
21	14:35:34.49 Entering AR Scene 2		
22	14:35:34.53 Target: - EMPTY - NO_POSE - NOT_OBSERVED		
23	Requesting bundle at http://www.westfahlsophie.com/Wagon1-IOS		
24	Creating dataset: Vuforia/Wagon1.xml/Wagon1		
25	Loaded: ModelTarget (1)(Clone)		
26	14:35:34.89 Target: Wagon1 NO_POSE - NOT_OBSERVED		
27	14:35:34.95 Target: Wagon1 NO_POSE -RECOMM_GUIDANCE		
28	14:35:38.97 Target: Wagon1 TRACKED - NORMAL		

Different multi-variant use cases

Back from Abstraction to Real World:

- One train/ wagon model **≙** one car model
- User selects his/her car model(s) and only these are downloaded
- Advantage: smaller application size, because only required models are downloaded, no application updates for new models

SCENARIO 7

Different multi-variant use cases

<u>Combinatorial explosion</u>

Before: e.g. 108 customer specific variations & user manuals)

→ After: **13 variation elements**

CYCLE 3: Final Prototype

Implementation

- Application implemented on the **real product**
- Combination of knowledge from the first two cycles
- No demonstration due to legal reasons
- Evaluation of Performance was repeated and confirmed, furthermore a **usability evaluation** was conducted

Evaluation: System Usability Scale

- Standardized Questionnaire: Ten given statements about the user-friendliness of an app
- Statements are rated on a Likert scale from one to five
- Result (SUS value) is calculated and can range from 0 to 100
- \rightarrow Conduction with eleven test subjects
- \rightarrow No representative results
- →SUS-value of 90 which corresponds to an A+

J. Brooke, "SUS: A quick and dirty usability scale," Usability Eval. Ind., vol. 189, 1995.

Summary: Our Contribution

Framework for the implementation of a mobile AR application with model-based tracking for multi-variant products

Fundamental approach for designing and implementing model-based AR applications with one model

2. Framework for the design and implementation for **numerous variants** and products

3. Quantitative and qualitative **evaluation** based on the performance and usability

Conclusion: Selected Outcome

Framework (Technology and Process) can be understood and implemented by **novices** as well as experienced users

B Generic multi-variant approach **not limited** in number of models, in use cases and neither in MTs

C No need to update application for new models due to remote storage

D Planned **go-live** and **roll-out** to other products

References

Video Squence 1: <u>https://youtu.be/XK_SVBiS7DA</u>

Video Squence 2: <u>https://youtu.be/HefZ7DHyn_c</u>

Icon-Images: https://www.iconsdb.com/

Unity: <u>https://unity.com/</u>

Vuforia Engine: <u>https://developer.vuforia.com/</u>

M. Hüllenkremer, "Erfolgreiche Unternehmen arbeiten mit Produktkonfiguratoren/Companies boost success with product configurators," Industrie Management, Publisher, Location, vol. 19 no. 1, pp. 37-40, 2003.

H. Oesterle, J. Becker, T. Hess, D. Karagiannis, H. Krcmar, P. Loos, P. Mertens, A. Oberweis, and E. Sinz, "Memorandum zur gestaltungsorientierten Wirtschaftsinformatik, Zeitschrift für betriebswirtschaftliche Forschung", vol. 6 no. 62, pp. 664–672, 2010.

J. Brooke, "SUS: A quick and dirty usability scale," Usability Eval. Ind., vol. 189, 1995.

Thank you!