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Introduction

e ML and, more specifically RL, appears in several research

areas in 5G and 6G

e However, the lack of freely available datasets or

environments to train and assess RL agents is a

practical obstacle that delays widespread adoption

e So, the key idea in this paper is to use realistic

representations of deployment sites together with

physics, sensors, and communication network

simulators, to enable training RL agents

e This methodology is named Communication Networks,

Artificial Intelligence and Computer Vision with 3D

Computer-Generated Imagery (CAVIAR)
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Overall descrlptlon of a possible CAVIAR implementation

CAVIAR simulation overview
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CAVIAR simulation for user
scheduling and beam
selection problems

e A set of mobile entities (UAVSs, cars and pedestrians)

receive a set of waypoints to follow

e  While following the waypoints, their trajectories are

recorded at a given sampling rate

e These recordings are used, at each simulation

step, to position the entities, while the channels

between them and the base station are calculated

e The communication parameters, together with UE

movements, are used to compose environments

(i.e. for user scheduling and beam selection)
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Environment communication
parameters configuration

Fix beamforming codebook obtained from
Discrete Fourier Transform (DFT) matrices
for 8x8 Uniform Planar Arrays (UPA)

Three users with 1 Gbit buffer each, and
traffic defined via a Poisson process

In total: 3 users and 64 beams, composing
an action space of 192 actions
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Network load Total throughput UAV (%) Pedestrian (%) Car (%)
Light 0.48 Gbps 50% 20% 30%
Heavy 0.96 Gbps 50% 20% 30%

1750 uav
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1500 pedestrian
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Example RL agent and baseline strategies to test the environment
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Baseline A2C agent (B-
RL)

State:
X,Y,Z, dropped packets P,

, transmitted packets P,, ,
buffered packets P, ,
bitrate

Action:

User (int), beam index
(int)

Reward:
_ Ptx[t] - 2Pd[t]
relt] = Py 1]




0.4 —— B-BeamOracle

Results

©
e The CAVIAR environment was used to generate 70 episodes, ‘g
@)
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from which 50 were used for training the RL agent, and 20 for

testing

e The sequential scheduling proves to be sufficient to attend the

demand in light traffic situations, however, for intense traffic 0 1000 2000 30008 4|°°° 5000 6000 7000
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moments, even using the best beam, without proper scheduling,

the performance of the reward tends to be negative 30 e B-Dummy
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e As expected, the B-BeamOracle presents the best performance,

o
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while the B-RL achieves performance close to the B-Dummy, I
which simply uses random actions ,
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e We believe that the use of more episodes and better modeling of

Occurrence in Episodes
o

\ |
0

I T u I(AI_EI DOSCOPE ' -1250  -1000 -750 —5;(; War;IZSO 0 250 500

ONLINE 2021

the agent can substantially improve its performance.
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Conclusion and future works

» This paper presented a framework for research on RL applied to scheduling and MIMO beam selection

» Using the framework, we provided statistics of an experiment in which an RL agent faces the problems of
user scheduling and beam selection

» the experiment allowed us to validate the designed environment for RL training and testing

» Future development will focus on
 in-loop simulations, where there is no need to generate trajectories in advance

« adding integration with more simulators to increase realism, such as a full-fledged network traffic
and a wave propagation with ray tracing software
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