ONLINE 2021

6-10 December 2021

Towards a robust new radio compatible with XR

Yuzhou Hu and Jiajun Xu ZTE Corporation & State Key Laboratory of Mobile Network and Mobile Multimedia Technology, China

Session 1: Enabling future wireless communication systems

Paper S1.2: Towards a robust new radio compatible with XR

Outline

- Background of eXtended Reality
- Traffic models for XR
 - Single-stream model
 - Data fitting approaches
 - Data fitting results
 - Multi-stream model
- Proposed priority-based adaptive preemptive scheduler
 - Challenges posed by XR to Rel-16 NR
 - Elaboration of our proposed scheduler
 - Simulation results
- Further study and improvements

Background of eXtended Reality

- **Business prospects:** The market margin for XR service is expected to largely exceed US\$180 million by the end of 2021 considering meta universe hype.
- **Challenge:** New radio air interface improvement from the 4 dimensions (**Capacity**, power, coverage, mobility).
- Industrial vision: Rel-17 RAN1 SI, Rel-18 WI, SA4 (S4aV200575), SA2 (S2-2102370)

XR	Virtual Reality	Augment Reality	Cloud Gaming
Application			CLOUD GAMING
	 VR1: Viewpoint dependant streams VR2: Split/View point rendering 	 AR1: XR distributed computing AR2: XR Conversational 	• Cloud game

Traffic models for XR

- Parameters for truncated Gaussian distribution
 - Mean packet size
 - Maximum packet size
 - Minimum packet size
 - Packet size deviation

(Note: STD/Max/Min are determined from the ratio w.r.t Mean)

- P-trace provided by SA
 - The j-th packet sizes calculation: $N_j = \sum_{i=1}^{x} n_{j_i}$ The packet sizes sample: $\{N_1, N_2, \cdots\}$

Size		Rendering time		importance		
n _{1_1}		0		8		The IP packets in one frame (nominal packets in Rel-17)
n _{1_x}		0		8		
n _{2_1}		16667		7		

Data Resource: http://dash.akamaized.net/WAVE/3GPP/XRTraffic/Traces/Candidate/VR2/

Data fitting approaches

- ٠
- Alt 1: Directly use inherent feature of data samples Mean packet size: $N_{mean} = \sum_{i=1}^{M} N_i / M$ Packet size standard deviation: $N_{STD} = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (N_i N_{mean})^2}$
 - Relationship between STD and mean: N_{STD}/N_{mean}
- Alt 2: Extract the inherent noise-free statistical characteristics ٠
 - Pre-filtering
 - Preliminary estimation

Pre-filtering

Data fitting results

- The sample noise causes some deviation in the mean and variance of the fitted data with Alt 1.
- The traffic derived with Alt2 is in much closer vicinity to actual sample distribution.
- Observations:
 - Packet size deviation = 3% * Mean packet size
 - Maximum packet size = 109% * Mean packet size (3 sigma principle)
 - Minimum packet size = 91% * Mean packet size (3 sigma principle)

Data Resource: http://dash.akamaized.net/WAVE/3GPP/XRTraffic/Traces/Candidate/VR2/

Multi-stream model

- An XR service typically consists of multiple flows with different Quality of Service (QoS) requirements ranging differently in terms of **data rate/periodicity/reliability/latency** etc.
- Typical multi-stream model
 - Audio stream and video-stream
- Typical multi-stream model for XR video
 - I-stream and P-stream (Models for I/P-stream have been captured in TR, where packet size ratio = 2)

Agreed traffic model for I/P-stream traffic model traffic model

Proposed traffic model for FoV and non-FoV traffic model

Priority-based adaptive preemptive scheduler

• Challenge for XR traffic transmission

ONLINE 2021

- A huge transport block in a jittering arrival manner.
- The stringent QoS requirement of reliability and latency.
- XR transmission implementation -- Coexistence with existing uRLLC and/or eMBB.
 - How XR service coexists with current existing service like uRLLC or eMBB, without excessive performance loss.
 - Preemption mechanism can be one of the solutions for XR service coexistence.

Priority-based adaptive preemptive scheduler

- UE importance signal flag *I*=[0,1,0,...,0,1]: Identify HP UEs (1) and LP UEs (0) in scheduler
 - Reference HP UE number *k*: Limited to the number of HP UEs configured in flag *I*. Affect HP UE fairness in scheduler.
 - Weight coefficient *f*: Belong to the rest UEs (remaining HP UE and LP UE) based on I and K. Affect preemption opportunities of HP UE.

Throughput calculation:

$$T' = T \cdot *I, \quad T = \{T_i\}_{i=1}^{UENum}$$
$$T_i = \frac{1}{N_{SB}} \sum_{j=1}^{N_{SB}} r_i(j) \cdot N_{RB} \cdot v, \quad i = 1, \dots, UENum$$

- Identify the importance of UEs to assist scheduling and resource allocation.
- Use HP UE's CQI report for reorder subband resource for the whole system.

• Weighed metric for the rest UEs (remaining HP UE and LP UE):

$$M_i^j = \frac{T_{i,ins}^j}{T_{i,aver}^j} * F(I(i))$$
$$F(x) = \begin{cases} 1, & x = 0\\ f, & x = 1 \end{cases}$$

- Identify the importance of UEs to assist scheduling and resource allocation.
- Configure the parameter *f* to affect the opportunities for HP UE preempting.

Simulation Results

Parameters	Values			
Scenario	Indoor Hotspot			
Traffic Model	 (HP) Traffic 1: Bit rate = 1.8Mbps, packet delay budget = 5ms. (LP) Traffic 2: Bit rate = 30Mbps, packet delay budget = 15ms. (according to conclusions of data fitting method Alt2) 			
Scheduler	Option 1: Propotion fair scheduler Option 2: Proposed scheduler			
TDD pattern	DDDSU			
Target BLER	10% for first transmission			

More simulation parameters are listed our paper S1.2: Towards a robust new radio compatible with XR

Observations:

- Priority-based adaptive preemptive scheduler provides around 12.5 percent capacity gain for SU-MIMO systems.
- The proposed scheduler can also be used in multi-stream model (e.g. FoV and non-FoV) and more performance gains are expected.

Further study and enhancements

- Enhanced QoS for different services
 - QoS info. with finer granularity for better representing user experience.
 - Further study how to use this kind of information to aid RAN transmission
- Preemption in multi-user MIMO scheduler
 - How to balance the relationship between UE-pairing and preemption in scheduler.
- Priority-based adaptive preemption for Multi-stream model
 - Intra-stream preemption should also be considered in scheduler.
- CBG mechanism for re-transmission
 - CBG re-transmission is capable of increasing the radio resource utilization efficiency in system.

ONLINE 2021

Thank you!

