ONLINE2020

7-11 December 2020

Flexible multiplexing mechanism for coexistence of URLLC and eMBB services in 5G Networks

Kai Xiao

Affiliation:

ZTE Corporation &

State Key Laboratory of Mobile Network and Mobile Multimedia

Contact information:

M: +86 15702989526

E: <u>xiao.kai@zte.com.cn</u>

Session 3: Wireless infrastructure and digital transformation

Paper S3.2

Xingguang Wei Affiliation:

ZTE Corporation Contact information: M: +86 18810562759 E: wei.xingguang@zte.com.cn

- Background
- Dynamic Pattern Cancelation Indication (DPCI)
- Resource Occupancy based Power Control (ROPC)
- Dynamic selection of DPCI and ROPC
- Simulation results and conclusion

1 Background

\Box Three types of sevices are summaried for supporting major scenarios in 5G,

- enhanced mobile broadband (eMBB): ultra-high definition video, 3D video, etc.
- ultra-reliable and low latency communication (URLLC): Driverless, industrial automation, etc.
- massive machine type of communication (mMTC): ...
- Standardization during 3GPP Rel-15 and Rel-16 focused on the first two types of services.

📕 UL grant #1 💋 UL grant #2

Resource scheduled

for URLLC UE

Inter-UE multiplexing

• eMBB and URLLC will be taken as an example of services with low and high priority, respectively

1 Background

ZTE中兴

Uplink cancellation indication(ULCI)

2 Dynamic Pattern Cancelation Indication

Semi-static 2-D bitmap in ULCI

- ✓ The semi-static 2-D bitmap pattern indication is difficult to meet the dynamic changing resource requirements of the service
- ✓ eMBB in the red box will be canceled falsely by ULCI with limited indication accuracy

2 Dynamic Pattern Cancelation Indication

Dynamic 2-D bitmap in DPCI

- Q bits are used for indicating which time occasions is occupied, where 'Q' equals to the number of time occasions.
- $C_{a \times b}$ is 2-D bitmap for frequency domain indication, each portion is indicated by a bit in the 2-D bitmap, wherein *a* represents the number of occupied time occasions and *b* represents frequency domain granularity.

ULCI	occupied time domain occasions number	1~7						
	frequency domain indication granularity	$\frac{1}{4}$						
DPCI	occupied time domain occasions number	1	2	3	4	5	6	7
	frequency domain indication granularity	$\frac{1}{21}$	$\leq \frac{1}{10}$	$-\frac{1}{7}$	$\leq \frac{1}{5}$	$\leq \frac{1}{4}$	$\leq \frac{1}{3}$	$\frac{1}{3}$

3 Resource Occupancy based Power Control

ZTE中兴

Cons

- ✓ Different interference levels caused by different combinations of the interference source and the interfered device
- ✓ One single PC parameter set can hardly not mattch with power boosting requirement under different interference levels, which means power waste of URLLC and degrade the eMBB performance

3 Resource Occupancy based Power Control

Different PC parameter sets for different URLLC TB

The different power control parameter sets for different group of time-frequency resources will be configured via RRC signaling.

□ Boosting power based on overlapping resource proportion

- 1. Computes the overlap proportion between each group of URLLC time-frequency resource and the time-frequency resource of the eMBB (gNB)
- 2. Sends a control information carrying the index of power control parameters to the calculation result (gNB)
- 3. Decodes the control information of ROPC (UE)

U KALEIDOSCOPE

ONI INF2020

4. Determines the power value to be enhanced for each group time-frequency resource according to the index in the time-frequency resource indication field (UE)

Index	Actual overlapping resource proportion <i>x</i>	Power boosting(dB)
0	<i>x</i> ≤ 10%	0
1	10% < <i>x</i> ≤ 40%	3
2	40% < <i>x</i> ≤ 80%	6
3	<i>x</i> > 80%	9

4 Dynamic selection of DPCI and ROPC

ROPC, DPCI and no scheme.

5 Simulation results and conclusion

□ Throughput simulation for eMBB UEs

Throughput simulation for eMBB UEs of different schemes using ULCI as baseline

Throughput simulation for eMBB UEs of different schemes using PC as baseline

5 Simulation results and conclusion

□ Performace requirement simulation for URLLC UEs

Multiplexing Schemes		$\Omega = (5,10)$	$\Omega = (10, 10)$	$\Omega = (20, 10)$	
No scheme (%)		84.37	78.64	66.71	
Existing schemes	ULCI (%)	93.33(+8.9%)	89.87(+11.2%)	80.64(+13.9%)	
	PC (%)	87.78(+3.4%)	83.97(+5.3%)	73.84(+7.1%)	
Proposed schemes	DPCI(%)	93.07(+8.7%)	89.34(+10.7%)	80.32(+13.6%)	
	ROPC(%)	88.34(+4.0%)	86.47(+7.8%)	76.77(+10.1%)	
	DPCI&&ROPC (%)	96.14(+11.8%)	92.99(+14.4%)	84.38(+17.8%)	

Performace requirement simulation for URLLC UEs using No scheme as baseline

5 Simulation results and conclusion

□ Conclusion

- Compared with ULCI, DPCI enhances the protection of low-priority services, and the throughput of eMBB UEs increases by 14.1% at the maximum ratio.
- Compared with PC, ROPC enhances the performance both of high-priority and lowpriority services, and the throughput of eMBB UEs increases by 12.8% when max 3 more percentage of URLLC UEs satisfies the requirements.
- Joint enabling of two types schemes such as DPCI and ROPC is realized for the first time. Compared with no scheme, extensive system level simulations results show that max 17.8% more percentage of URLLC UEs satisfies the requirements, and the throughput of eMBB UEs is increased by 23.4% at the maximum ratio.

ITUKALEIDOSCOPE ONLINE2020

Thank you!

