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Abstract
Artificial intelligence (AI) and machine learning 

(ML) techniques are becoming essential to auto-
mate the control and management of complex sys-
tems, such as 5G and future networks and services, 
through the collection and timely processing of 
a large amount of control data from the system. 
The standardization activities of AI/ML integrat-
ed network architectures and frameworks have 
recently been progressing in various standards 
developing organizations (SDOs). This article 
provides a detailed survey of the AI/ML network 
standardization activities of the International Tele-
communication Union. An overview of the relat-
ed activities of other SDOs, such as the European 
Telecommunications Standards Institute and the 
3rd Generation Partnership Project, is also provid-
ed. Finally, a set of related open issues that deserve 
further research and standardization are discussed.

Introduction
Fifth generation (5G) networks and beyond will 
be built on the convergence of virtualized net-
working and cloud/edge computing infrastruc-
tures. These networks are configured through 
software using the recently developed technolo-
gies of software-defined networking (SDN) and 
network function virtualization (NFV) [1]. A virtu-
alized computing infrastructure can be segmented 
into multiple virtual machines or containers, each 
of which can be used to deploy and operate one 
or more cloud-native network functions or virtual 
network functions (VNFs) [2]. SDN enables the 
configuration of virtual network slices by orches-
trating VNFs remotely through control functions 
implemented in the software. Moreover, the 
computational (e.g., CPU and memory), storage, 
and networking (e.g., buffer size and bandwidth) 
resources allocated to each VNF can be adjusted 
dynamically such that its performance can always 
meet the quality-of-service requirements of the 
delivered communication service [3].

In addition, 5G networks, which are also 
referred to as IMT-2020 networks in the Interna-
tional Telecommunication Union (ITU) standards, 
have been designed and developed to offer three 
types of communication services: enhanced mobile 
broadband (eMBB), massive machine-type commu-
nication (mMTC), and ultra-reliable low-latency com-
munication (URLLC) [4]. High-definition video (e.g., 
4K video) and augmented/virtual reality (AR/VR) 

applications that require very high bandwidth are 
supported by eMBB services, and Internet of Things 
(IoT) devices and smart utility meters connected to 
the network in large numbers are supported by an 
mMTC service, whereas automated vehicles that 
require ultra-high reliability and low latency are sup-
ported by a URLLC service. These three types of 
communication services can be offered from the 
same sharable virtualized cloud computing and net-
working infrastructure by configuring network slices 
containing the required VNFs [3].

Unlike traditional telecommunication infra-
structures, in which the network functions are 
mostly implemented in hardware, the control 
and management of virtualized, programmable, 
software-driven, and distributed cloud/edge com-
puting infrastructures are challenging because of 
the proliferation of vendor-specific platforms and 
management technologies. Moreover, the emerg-
ing demand for more complex services (e.g., con-
text-aware and personalized services) for a large 
number of user subscriptions has made network 
control and management extremely challenging.

Starting from the network service design, 
resource provisioning, and deployment for perfor-
mance monitoring, resource adjustment, failure 
detection, and recovery, network control and man-
agement operations require the analysis of a huge 
volume of control data collected from various com-
ponents of the network. Under this complex situa-
tion, the capacity of the human operator does not 
meet the requirements of quickly processing a large 
volume of data and providing a timely response. To 
address this issue, advanced techniques of artificial 
intelligence (AI) and machine learning (ML) have 
recently been applied in network control and man-
agement functions [5, 6].

The effectiveness of ML applications for work-
load and resource utilization prediction, and accord-
ingly adjusting the computational resources and 
reconfiguring the network to maintain the required 
quality of service at all times, was demonstrated in a 
paper presented at the ITU Kaleidoscope Academic 
Conference 2020 [7]. Extending the standardization 
aspects identified in that paper, this article provides a 
survey of AI/ML integrated network standardization 
activities of various standards developing organiza-
tions (SDOs), mainly focusing on the activities of the 
International Telecommunication Union (ITU). ITU’s 
Telecommunication Standardization Sector (ITU-T) 
has recently produced several standard documents 
(i.e., ITU-T Recommendations) on the high-lev-
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el architectures and frameworks of ML-controlled 
networks. In this article, the latest developments in 
ITU-T AI/ML high-level architectures of data han-
dling, network intelligence evaluation, network ser-
vice provisioning, resource and fault management, 
and quality of service assurance are reviewed. Sim-
ilarly, the reference architectures of network and 
service management developed by the European 
Telecommunications Standards Institute’s (ETSI’s) 
two Industry Specification Groups (ISGs), Experien-
tial Networked Intelligence (ENI) and Zero Touch 
Network and Service Management (ZSM), as well 
as Network Data Analytics Function (NWDAF) of 
the 3rd Generation Partnership Project (3GPP) are 
reviewed. It also discusses a set of open issues that 
deserve further research and standardization for the 
realization of intelligent and autonomous network 
control and management.

AI/ML Network 
Standardization in ITU

ITU started a study and standardization of AI/
ML integration in telecommunication networks in 
2017 with the establishment of the Focus Group 
on Machine Learning for Future Networks, includ-
ing 5G (FG ML5G) [8]. This section introduces 
the ITU-T Recommendations developed on the 
basis of FG ML5G deliverables, ITU-T Recommen-
dations developed from contributions by ITU-T 
Study Group 13 (SG13), and an overview of the 
activities of the recently established Focus Group 
on Autonomous Networks.

ITU-T Recommendations from  
FG ML5G Deliverables

FG ML5G studied the use cases, requirements, 
data formats, interfaces, intelligence-level evalua-
tion, and ML-enabling network architecture among 
three working groups. In its two-and-a-half-year life-
time (2018–2020), FG ML5G produced 10 deliver-
ables (the list is available on the FG ML5G website 
[8]) and submitted them to ITU-T SG13 for the 
consideration as ITU-T Recommendations.

ITU-T SG13 further improved the content of 
the FG ML5G deliverables and approved the fol-
lowing documents as one ITU-T Supplement and 
four ITU-T Recommendations:
• ITU-T Supplement 55: Machine learning in 

future networks including IMT-2020: use cases
• ITU-T Recommendation Y.3172: Architectur-

al framework for machine learning in future 
networks, including IMT-2020

• ITU-T Recommendation Y.3173: Framework 
for evaluating intelligence levels of future 
networks, including IMT-2020

• ITU-T Recommendation Y.3174: Framework 
for data handling to enable machine learning 
in future networks, including IMT-2020

• ITU-T Recommendation Y.3176: Machine 
learning marketplace integration in future 
networks including IMT-2020

• ITU-T Recommendation Y.3179: Architectur-
al framework for ML model serving in future 
networks, including IMT-2020
ITU-T Supplement 55 describes 30 use cases 

and their requirements. The use cases are classi-
fied into the following five groups: network slice 
and service, user plane, applications, signaling and 
management, and security. Similarly, the require-

ments are mapped to three groups of functions: 
data collection, data storage and processing, and 
ML models. The requirements are labeled as criti-
cal, expected, and added values.

ITU-T Recommendation Y.3072 specifies the 
requirement and high-level architecture for inte-
grating ML in future networks, including IMT-2020. 
It also provides example guidelines for mapping 
this ML-based architecture framework with a stan-
dardized 5G network architecture. As shown in Fig. 
1, the architecture framework consists of four sub-
systems: the ML pipeline subsystem, ML sandbox 
subsystem, management subsystem, and ML under-
lay networks. The ML pipeline subsystem contains 
a set of ML models and execution abstraction. It 
consists of several functional components, such 
as the input data collector (C), preprocessor (PP), 
ML models (M), policy (P), and output result dis-
tributor (D). The input data are collected through 
a source function (SRC), and the ML output results 
are distributed to the network controllers through 
a sink function (SINK). The ML sandbox subsystem 
also contains the same functional components as 
the ML pipeline subsystem. The ML sandbox sub-
system uses simulated underlay networks to train 
and test ML models. Trained ML models are then 
deployed in the ML pipeline subsystem to mon-
itor and control live ML underlay networks. The 
management subsystem consists of an ML func-
tion orchestration (MLFO) and other management 
functions. The MLFO function obtains the input of 
the ML intents, and manages and orchestrates the 
functional components of the ML pipeline and ML 
sandbox. A detailed description of these functions 
and interfaces can be found in [9].

ITU-T Recommendation Y.3173 starts with a 
description of the progress in network intelligence 
levels and then specifies methods and an architec-
ture for the network intelligence level evaluation. 
The standard methods for evaluating network intel-
ligence levels can provide a decision mechanism to 
operators, equipment vendors, and other network 
industry participants for planning network technol-
ogy features and product roadmaps. The following 
five dimensions are provided for an intelligence level 
evaluation: demand mapping, data collection, anal-
ysis, decision, and action implementation. Demand 
mapping corresponds to the process of converting 
the network configuration or requirements given 
by a human operator into specific instructions that 
network components can understand and execute. 
Data collection and analysis dimensions are related 
to the process of collecting network monitoring and 
control data and conducting an analysis.

The decision and action implementation 
dimensions relate to the process of making net-
work or service configuration decisions and, 
accordingly, command executions.

To evaluate the overall network intelligence 
level of an entire network, the intelligence levels 
of individual workflows and network subsystems 
need to be evaluated with respect to the five 
dimensions. The workflows constitute the tasks of 
planning, deployment, maintenance, optimization, 
and provisioning. Similarly, the network subsystem 
includes components such as network elements, 
management subsystems, and application plat-
forms. To determine the overall network intelli-
gence level, a basic method is provided, which is 
based on the network intelligence capability level 

ITU-T Supplement 55 
describes 30 use cases 

and their requirements. 
The use cases are clas-
sified into the following 

five groups: network slice 
and service, user plane, 

applications, signaling 
and management, and 
security. Similarly, the 

requirements are mapped 
to three groups of func-

tions: data collection, data 
storage and processing, 

and ML models. The 
requirements are labeled 
as critical, expected, and 

added values.
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of each of the five dimensions. Network intelli-
gence capability levels are determined based on 
whether the function of a dimension is executed 
by a human only, a human and a system, or a sys-
tem only. Based on the combinations of the intel-
ligence capability levels of individual dimensions, 
six intelligence levels are defined, as shown in 
Table 1. In the lowest network intelligence level of 
L0, which corresponds to a manual network oper-
ation, all dimensions are executed by humans. 
Similarly, in the highest network intelligence level 
of L5, which corresponds to full intelligence, all 
dimensions are autonomously executed by the 
system only. In between, there are intermediate 
intelligence levels in which the tasks of some 
dimensions require human involvement.

ITU-T Recommendation Y.3074 specifies the 
ML data handling framework to deal with the 
diversity of the control data produced by various 
components in the network. It introduces data 
models, brokers, and application program inter-
faces (APIs) in both the user and control planes. 
It also provides the requirements for input data 
collection, processing, and output data.

ITU-T Recommendation Y.3176 describes the 
challenges, motivations, requirements, and archi-
tecture for ML marketplace integration in networks. 
It defines the ML marketplace as a repository of 
interoperable trained AI/ML models. It also spec-
ifi es a method that uses the ML intent and MLFO 
to select appropriate ML models from the ML mar-
ketplace, and interfaces to connect the ML market-
place with the ML sandbox and the ML pipeline.

Similarly, ITU-T Recommendation Y.3179 spec-
ifies an architectural framework for ML model 
serving, that is, the preparation and deployment of 
ML models in diff erent deployment environments. 
The ML model service takes place in the following 

three fundamental stages: inference optimization, 
model deployment, and model inference. In the 
inference optimization stage, trained ML models 
are modified to improve the performance when 
executing an inference in a certain deployment 
environment according to the requirements of 
the use case and the current state of the network. 
In the model deployment stage, the ready-to-run 
ML model is deployed in a specific deployment 
environment. Finally, in the inference stage, the 
model inference output result (e.g., prediction or 
classifi cation) is applied to ML pipelines.

In addition to the above ITU-T Recom-
mendations produced by enriching FG ML5G 
deliverables, ITU-T SG13 has also produced Rec-
ommendations from contributions submitted by 
its delegates, which are described next.

ITU-T Recommendations from 
SG13 Contributions

From the contributions of its delegates, ITU-T 
SG13 has produced three Recommendations, 
Y.3175, Y.3177, and Y.3178, which are briefly 
described below.

ITU-T Recommendation Y.3175 specifies the 
functional architecture of ML-based quality of ser-
vice (QoS) assurance, including the reference points. 
It also describes the procedures for ML-based QoS 
assurance in the IMT-2020 network.

By extending the basic ML architecture spec-
ified in ITU-T Y.3172, ITU-T Recommendation 
Y.3177 specifies a high-level architecture of AI/
ML-based network automation for resource and 
fault management. Figure 2 shows the architec-
ture, which is composed of four subsystems. The 
management subsystem contains the following 
three management functions: resource manage-
ment, fault management, and other manage-

The 3GPP has defined the 
network data analytics 
function (NWDAF) in the 
5G service-based architec-
ture (SBA) as the enabler 
of intelligence and auton-
omous network operation 
and management. The 
NWDAF collects data from 
various modules of the 
5G system and provides 
analysis results.

FIGURe 1. High-level architecture for integrating machine learning in future networks including IMT-2020.
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ment functions. It also contains the ML functional 
orchestrator (MLFO), which takes ML intents as 
input. The AI/ML pipeline consists of six function-
al groups: data collection, fault detection, fault 
recovery, resource prediction, resource adapta-
tion, and controller. The AI/ML sandbox is com-
posed of an AI/ML pipeline for the purpose of 
training AI/ML models by using the data obtained 
from the simulated AI/ML underlay network. The 
reader is referred to [10] for a detailed descrip-
tion of these functional groups and interfaces.

Similarly, ITU-T Recommendation Y.3178 spec-
ifi es a functional framework for AI-based network 
service provisioning. It starts with a description of 
the business-role-based model for AI-based net-
work service provisioning, then provides a list of 
high-level requirements for the roles and their inter-
actions from an AI-based operational perspective, 
as well as the functional framework showing the 
components and their interactions for AI-based 
operations for network service provisioning.

Focus Group on Autonomous Networks
ITU-T SG13 established the Focus Group on 
Autonomous Networks (FG AN) [11] in December 
2020 to provide an open platform for conducting 

pre-standardization activities on autonomous net-
works. The terms of reference of FG AN define 
autonomous networks as those that possess the 
ability to monitor, operate, recover, heal, protect, 
optimize, and reconfi gure themselves. FG AN stud-
ies the autonomy of various processes or network 
aspects, such as planning, security, audits, invento-
ry, optimization, orchestration, and quality of expe-
rience. The group studies the various approaches 
of exploratory evolution, emergent behavior, and 
real-time responsive experimentations that can 
provide a new layer of abstraction for introducing 
evolution mechanisms leading to the realization 
of autonomous networks. The group also tries to 
address the questions associated with accountabil-
ity for non-human decisions that aff ect customers 
and explore the approaches of exploratory evolu-
tion, emergent behavior, and real-time responsive 
experimentation to enable an autonomous net-
work.

Over the course of a one-year period, FG AN 
has planned to produce deliverables defi ning the 
characteristics, use cases, requirements, proofs of 
concepts, high-level architecture, standardization 
gap analysis, specifi cation languages, and repre-
sentations of autonomous networks.

Table 1. Network intelligence levels.

Network intelligence level
Dimensions

Action implementation Data collection Analysis Decision Demand mapping

L0 Manual network operation Human Human Human Human Human

L1 Assisted network operation Human and system Human and system Human Human Human

L2 Preliminary intelligence System Human and system Human and system Human Human

L3 Intermediate intelligence System System Human and system Human and System Human

L4 Advanced intelligence System System System System Human and System

L5 Full intelligence System System System System System

FIGURe 2. High-level architecture of AI/ML-based network automation for resource and fault management.
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AI/ML Network 
Standardization in Other SDOs
This section presents a review of network-automa-
tion-related activities of 3GPP and ETSI.

3GPP Network Automation for 5G
3GPP has defi ned the network data analytics func-
tion (NWDAF) in the 5G service-based architecture 
(SBA) as the enabler of intelligence and autono-
mous network operation and management. The 
NWDAF collects data from various modules of the 
5G system and provides analysis results. 

3GPP TR 23.791 specifies a general frame-
work for 5G network automation [12]. As shown 
in Fig. 3, the NWDAF collects data from the oper-
ation, administration, and maintenance (OAM) 
module, application functions (AFs), 5G core 
network functions (NFs), and data repositories. 
In addition, 3GPP TS 23.288 specifies the refer-
ence architecture and detailed procedures for 
data analytics [13]. It also provides a description 
of NWDAF discovery and selection by NFs/AFs, 
network performance analytics, and user data 
congestion analytics.

NWDAF analyzes the data by leveraging AI/
ML models. The analytic results are then delivered 
to the NFs/AFs that have requested the NWDAF. 
The NFs/AFs utilize analytical output data to make 
appropriate decisions for network operation and 
management actions. NWDAF utilizes existing 5G 
service-based interfaces to collect data from NFs/
AFs and OAM, as well as deliver analytical output 
data to them.

Because the input data of the NWDAF may 
come from multiple sources, such as mobility 
management, session management, QoS man-
agement, application layer, security management, 
and NF life cycle management, the resulting 
actions that an NF or AF takes according to the 

analytical feedback may be concerned with many 
of these functional domains. TR 23.791 pro-
vides guidelines for the application of NWDAF 
to various use cases belonging to one or several 
domains. In the description of each use case, the 
following six aspects are included: domain (e.g., 
performance, QoS, resilience, and security) and 
timescale, nature of input data (e.g., systems logs, 
KPI, and events), nature of the output data, types 
of NFs consuming NWDAF analytics output data, 
examples of actions taken, and benefi ts (e.g., rev-
enue, resource saving, quality of experience assur-
ance, and reputation enhancement).

ETSI EXperiential 
Networked Intelligence

ETSI’s Experiential Networked Intelligence Indus-
try Specification Group (ENI ISG) is targeting 
the development of efficient and extensible 
standards-based mechanisms to provide con-
text-aware services. It has specifi ed an experiential 
architecture that uses AI/ML and other mecha-
nisms to improve its understanding of the network 
environment, and thus the operator experience, 
over time. It can adapt its functionality based on 
contextual changes in user requirements, network 
conditions, and business goals [14].

Figure 4 shows the ETSI ENI system architecture, 
which consists of three modules: the input process-
ing module, analysis module, and output generation 
module. The fi gure also shows the API broker; how-
ever, the ENI system can function with or without 
the API broker. The API broker serves as a gateway 
between diff erent systems. It possesses the transla-
tion mechanisms to translate data communicated 
from the external system into a normalized form that 
all ENI functional blocks can understand, as well as 
translate recommendations and commands from 
the normalized form of the ENI system to a form 
that the external system can understand. Thus, it 
enables heterogeneous types of external systems 
such as infrastructure, applications, and users to 
interoperate with the ENI system.

The input processing and normalization mod-
ule possesses data ingestion and normalization 
functional blocks to process the input data such 
that the other functional blocks in an ENI system 
can interpret and understand the data in a unifi ed 
and consistent manner.

The analysis module includes context-aware, 
knowledge management, cognitive processing, 
situation-aware, model-driven, and policy manage-
ment functional blocks. The context-aware func-
tional block describes the state and environment 
in which a set of entities in the controlled or assist-
ed system (i.e., the system being assisted and/or 
controlled by the ENI system) exist. The context 
consists of measured and inferred knowledge that 
may change over time. The knowledge manage-
ment functional block includes the mechanisms for 
knowledge representation, inference, and reason-
ing to represent information about both the ENI 
system and the controlled external system.

The cognition processing functional block 
includes a mechanism to understand normalized 
ingested data and information, as well as the con-
text that defi nes how those data were produced. 
Based on data interpretation results, it determines 
whether any action needs to be taken to ensure 
that the goals and objectives (e.g., improving or 

FIGURe 3. General framework of 3GPP 5G network automation using 
network data analytics function.

KAFLE_LAYOUT.indd   110KAFLE_LAYOUT.indd   110 10/7/21   1:40 AM10/7/21   1:40 AM



IEEE Communications Standards Magazine • September 2021 111

optimizing the performance, reliability, and/or 
availability) of the ENI system have been met. 
The situation awareness functional block includes 
a mechanism to enable the ENI system to be 
aware of events and behaviors that are relevant 
to the controlled system. It has the capacity to 
understand how information, events, and recom-
mendation commands given by the ENI system 
impact the management and operational goals 
and behavior in the short and long terms.

The model-driven engineering functional block 
contains a set of models that collectively abstract 
all important concepts for managing the control 
system governed by the ENI system. The policy 
management functional block provides a set of 
rules to manage the system in such a way that the 
system goals and objectives are met.

Similarly, the denormalization functional block 
of the denormalization and output generation 
module includes mechanisms to process and 
translate policies, recommendations, and data 
received from other functional blocks of the ENI 
system into an intermediate form that can be sub-
sequently translated or transcoded by the output 
generation functional block into a form that the 
controlled systems are able to understand and 
use. If an API broker exists, the output is sent to 
the API broker; otherwise, it is sent directly to the 
controlled system.

The ENI system architecture was designed 
based on the key assumption that the ENI system 
functionality evolves over time to meet emerging 
functional requirements such as network and ser-
vice planning requirements, service provisioning, 
deployment, optimization, data collection, model-
ing, analysis, policy specifi cations, interoperability 
with other systems, non-functional requirements 
of system performance (latency, accuracy, and 
efficiency), and scalability, among other factors. 

The ENI architecture can be applied to var-
ious aspects of network management, such as 
infrastructure management, network operation, 
service orchestration, and the management of 
numerous use cases.

ETSI Zero Touch Network and 
Service Management

ETSI ISG Zero Touch Network and Service Man-
agement (ZSM) specifi es the architecture, function-
al, and operational requirements for E2E networks, 
and service automation based on the closed-loop 
control and integration of AI/ML techniques. The 
ZSM architecture aims to address the challenges of 
technological and managerial heterogeneity in E2E 
cross-domain network management by defining 
a holistic management framework that can reuse 
the management capabilities available in various 
standard technologies. It follows the principles of 
modularity, extensibility, scalability, model-driven 
open interfaces, closed-loop management automa-
tion, support of stateless management functions, 
resilience, intent-driven interfaces, and simplicity, 
among others [15].

Figure 5 shows the ETSI ZSM reference archi-
tecture, which is composed of a two-layer hier-
archical structure of management domains. In 
the lower layer, there are multiple management 
domains (MDs), each of which is responsible for 
managing a domain-managed infrastructure; in 
the upper layer, this is an end-to-end (E2E) ser-
vice management domain, which orchestrates the 
management services provided by individual man-
agement domains to realize E2E cross-domain 
management. Both the individual and E2E man-
agement domains expose a set of management 
services that they provide.

Management domain services can be cate-
gorized into the following groups. Domain data 

FIGURe 4. High-level ENI system architecture with API broker.

The ENI system architec-
ture was designed based 

on the key assumption 
that the ENI system func-
tionality evolves over time 

to meet emerging func-
tional requirements such 

as network and service 
planning requirements, 

service provisioning, 
deployment, optimization, 
data collection, modeling, 
analysis, policy specifica-

tions, interoperability with 
other systems, non-func-

tional requirements of 
system performance , and 

scalability, among other 
factors.
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collection services monitor the domain-managed 
infrastructure and collect data as demanded by 
other management functions. Domain analytics 
services apply various data analytics to the collect-
ed data to generate domain-specific knowledge 
and predict domain-specific behavior. Domain 
intelligence services execute closed-loop automa-
tion functions of decision support, decision mak-
ing, and action planning to enable autonomous 
management of the domain-managed infrastruc-
ture. Domain orchestration services automate 
workflows and processes inside a management 
domain to handle the life cycle management of 
the domain-managed infrastructure. Domain con-
trol services facilitate the control of each manage-
ment entity.

Similarly, the E2E service management domain 
contains the following groups of management 
services: E2E service orchestration services are 
responsible for the coordination of provisioning, 
confi guration, and life cycle management of var-
ious services across management domains. E2E 
service intelligence services are responsible for 
driving closed-loop automation in E2E networks 
and service management. E2E service analytics 
services are responsible for deriving E2E service 
insight for managing E2E network service perfor-
mance. E2E service data collection services are 
responsible for collecting E2E service-related data. 
As in the individual management domains, each 
E2E management service is off ered through one 
or more interfaces.

Data services provide the means of data shar-
ing with authorized consumers within and across 
management domains while taking care of infor-
mation security and data privacy regulations. 
Data services may store and provide performance 
monitoring data, trace data, configuration data, 
topology data, and inventory data, among other 
data types.

An integrated fabric exists inside each manage-
ment domain. There is also a cross-domain inte-
gration fabric between each management domain 
and the E2E service management domain. The 
integration fabric provides a set of ZSM services 
to facilitate the interoperation of management 
functions with regard to the offered and con-
sumed management services. Services offered 
by the integration fabric include the registration/
de-registration of management services, discovery 
of registered management services and the means 
to access them, the means to support the invoca-
tion of management services, and the means to 
support synchronous and asynchronous commu-
nication. Similarly, the cross-domain integration 
fabric off ers the services of registration, discovery, 
communication, invocation, and capability expo-
sure confi guration of management services.

KeY Architecture Features
As common features of intelligent and autono-
mous network management framework architec-
tures being developed in ITU-T, 3GPP, ETSI ENI, 
and ZSM, all are based on data collection (from 
various network functions, application functions, 
and other repositories) and data processing and 
analysis using AI/ML models. The key features of 
these architectures are listed in the second col-
umn of Table 2. 

The last column mentions the target networks 
that fall in the scope of each of these architec-
tures. Both ITU-T and 3GPP have considered 5G 
networks; however, the ITU-T ML architecture 
is focused mainly on fixed wireline networks, 
whereas 3GPP SBA 5G architecture also includes 
radio access networks in the scope. ETSI does 
not assume any specific network type but con-
siders a generalized network architecture. In con-
trast to the ITU-T, 3GPP, and ETSI ENI framework 
architectures, which mainly focus on the manage-
ment of a single administration domain, the ETSI 
ZSM architecture specifi es a holistic management 
framework to enable the interworking of various 
domain-specifi c network management standards 
to support E2E service management across diff er-
ent technology and administrative domains.

Network Automation 
Research Issues

Although several framework architectures have 
been developed in various SDOs, the detailed 
specifi cations of the related protocols, mechanisms, 
and technologies remain to be developed. This 
section discusses a set of related open research 
and standardization issues for intelligent and auton-
omous networks and service management.

Heterogeneity in Multiple Domains: The fi rst 
issue is the challenges in the E2E management 
of heterogeneous technology and administration 
domains. As stated earlier, the E2E management 
of network services in cloud-native future net-

FIGURe 5. ETSI ZSM framework reference architecture.
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works formed by the convergence of network-
ing and cloud/edge computing infrastructures is 
challenging due to the involvement of different 
technologies and administrative domains, such 
as the domains of mobile operators, edge-com-
puting service providers, core network operators, 
and cloud-computing service providers. Each of 
these domains may employ different types of net-
work resource management mechanisms. In a 
multi-vendor E2E communication service deliv-
ery environment, each vendor network may have 
its own operation and business support system 
(OSS/BSS) with different control interfaces, 
resource virtualization and SDN technologies, 
AI/ML techniques, and models. To address this 
issue, the 5G service-based architecture of 3GPP 
applies SBI between the NWDAF and other net-
work functions; in addition, ZSM has an E2E ser-
vice management domain, ENI has an API broker, 
and the ML network architecture of ITU-T has an 
MLFO. However, they lack detailed specifications 
for the design and implementation of an easy-to-
deploy multi-domain management mechanism 
that autonomously re-composes and reconfigures 
itself to provide near-optimal performance for 
different types of network services. For example, 
the standard representations of ML models, man-
aged resources, and management methods to be 
used in each management domain have yet to be 
defined. Only after having standardized represen-
tations can these entities be orchestrated from the 
overlay E2E service management domain.

Abstraction of Hierarchical Management 
Layers: Hierarchical management layers have 
been proposed for E2E network and service 
management (e.g., the ZSM architecture con-
tains open interfaces, model-driven services, 
and resource abstraction). However, they lack 
detailed specifications of interfaces that can 
be followed to implement mechanisms for the 
exchange of management capabilities and relat-
ed data among multiple management domains. 
Moreover, because the volume of management 
data produced in each management domain is 
extremely large, an appropriate level of abstrac-

tion in each management domain is required to 
expose only the relevant information in the stan-
dard form and size.

Scalability of Telemetry Data Collection: For 
intelligent and autonomous E2E network and 
service management, the existence of standard 
technology for agile monitoring and control of all 
involved network functions is essential. The moni-
toring and control functions include a process for 
network telemetry data collection, which needs 
to be efficient to avoid incurring a high overhead 
hampering network performance and delaying 
the execution of control commands. The intelli-
gent and autonomous telemetry data collection 
may require attaching an AI/ML process to each 
network function to carry out optimal decisions 
regarding the right amount and time of telemetry 
data collection to ensure the efficiency and scal-
ability of the overall system.

Data Models: Standard data models are essen-
tial for sharing cross-domain control data for the 
realization of autonomous E2E networks and ser-
vice management. Cross-domain data services in 
the ZSM reference architecture and data handling 
framework in ITU-T Y.3174 have been defined 
and specified at the conceptual level. The ZSM 
framework architecture also provides definitions 
and requirements for data collection, data stor-
age, data persistence, and data processing ser-
vices. However, they lack detailed specifications 
of data models that can be followed to implement 
scalable mechanisms for efficiently exchanging rel-
evant data across multiple management domains. 

AI/ML Pipelining: To realize scalable E2E net-
work management, there must be a mechanism 
for collaboration between the AI/ML models 
used within the same local management domain 
as well as across different management domains. 
The ML pipelining concept has been mentioned 
in the ITU-T ML architecture [9]. Similarly, the 
ZSM framework’s hierarchical management struc-
ture also assumes the existence of domain-specif-
ic ML or data analytics models [15]. However, the 
detailed design of management architecture that 
can fully leverage AI/ML capabilities for cross-do-

Table 2. Key architecture features.

Architectures Key features Target networks

ITU-T ML architecture

• Pipelining of ML models  
• Defining network intelligence levels  
• Integrating ML model marketplace  
• Integrating ML sandbox for model training

5G and beyond, mainly fixed wireline 
network aspects

3GPP 5G SBA 
architecture

• NWDAF as key component  
• Using 5G service-based interfaces to access data from OAM module,  
   AF, NF, and repositories, and deliver analysis results  
• Applicability of NWDAF in various use cases

5G architecture, including radio 
access network aspects

ETSI ENI architecture

• Generalized adaptive architecture capable of learning from the  
   context and evolving the system functionality over time  
• Focused on data processing and analysis, together with knowledge  
   management  
• Applicable to various aspects of network management, e.g.,  
   infrastructure, operation, service orchestration

Not specific to 5G, assuming a 
generalized architecture

ETSI ZSM architecture

• Holistic management framework for reusing management capabilities  
   available in various standard technologies  
• E2E service management through bridging individual network  
   management domains

Not specific to 5G, focused on 
interworking of multiple technological 
and administrative domains

Hierarchical management 
layers have been proposed 

for E2E network and 
service management (e.g., 

the ZSM architecture 
contains open interfaces, 

model-driven services, 
and resource abstrac-

tion). However, they lack 
detailed specifications of 

interfaces that can be fol-
lowed to implement mech-

anisms for the exchange of 
management capabilities 

and related data among 
multiple management 

domains.

KAFLE_LAYOUT.indd   113KAFLE_LAYOUT.indd   113 10/7/21   1:40 AM10/7/21   1:40 AM



IEEE Communications Standards Magazine • September 2021114

main management is still missing, which deserves 
further research and standardization.

Conclusion
This article surveys the status of the standardization 
of AI/ML-based network and service management 
architectures in ITU-T, 3GPP, and two ISGs of ETSI: 
ENI and ZSM. The ITU-T architectures are based 
on AI/ML model pipelining for the autonomous 
operations of control information handling, network 
intelligence evaluation, network service provision-
ing, resource and fault management, and quality 
of service assurance. Similarly, the 3GPP 5G ser-
vice-based architecture has the NWDAF function 
that uses 5G service-based interfaces to access data 
from OAM modules, application functions, network 
functions, and repositories, and delivers analysis 
results to them. The ETSI ENI architecture is capable 
of learning from context and evolving in terms of 
system functionality over time. The ETSI ZSM archi-
tecture presents a holistic E2E service management 
framework for reusing management capabilities 
available in various standard technologies used in 
individual network management domains.

Although framework architectures are being 
developed in various SDOs, detailed specifications 
of related protocols, mechanisms, and technolo-
gies are still missing. Therefore, future research and 
standardization are required to develop detailed 
specifications that can be followed to implement 
the framework architectures. For future study, the 
issues of interworking of heterogeneous multiple 
domains, abstraction of management layers, scal-
able telemetry, data models, and AI/ML pipelining 
are also discussed. To realize the concept of AI/ML 
pipelining, standardization activities are required 
to specify the design, implementation, and opera-
tional cycles that allow AI/ML models from differ-
ent domains to be combined in the same way that 
software libraries and modules are combined in 
general-purpose computing platforms.
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