TUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

Optical Flow Based Learning Approach For Abnormal Crowd Activity Detection With Motion Descriptor Map

Dhananjay Kumar

Department of Information Technology

Anna University, MIT Campus, Chennai, India

Email: dhananjay@annauniv.edu

26-28 November Santa Fe, Argentina

Outline

- Overview
- Proposed System Model
- Magnitude Vector & Motion Descriptor
- Direction & Influence Weight in Motion Descriptor
- Motion Descriptor Pattern Clustering and Nearest Neighbor Search
- Algorithm Development
- Performance Evaluation
- Acknowledgement

Overview

- ➤ Development of Intelligent visual surveillance (IVS) for identification of specific objects, behaviors or attributes in video signals
- > The IVS system transforms the video signals into structured data
- Monitor and analyses user activity and behavior at the application level

ITU-T recommendation F.743.1 -

"Requirements for intelligent visual surveillance"

ITU-T recommendation X.1157 –

"Technical capabilities of fraud detection and response for services with high assurance level requirements"

Fig. Functional components of the abnormal activity detection system

Proposed System Model

Fig. Overview of the proposed model for abnormal crowd activity detection

Magnitude Vector & Motion Descriptor

Magnitude Vector Computation

The magnitude of the block b_i^k in direction k is calculated as,

$$b_i^k = \sum_{p_d = k.\pi/4}^{(k+1).\pi/4} p_m$$

where p_d represents direction of motion of a particle and p_m represents magnitude of the particle.

Motion Descriptor Computation

Threshold th_{b_i} is computed as,

$$th_{b_i} = max(b_i^k).size_{b_i}$$

The flag variable f is computed as,

$$f = \begin{cases} 0 \text{ , } if \ ed_{ij} > th_{b_i} \\ 1 \text{ , } otherwise \end{cases}$$

Direction & Influence Weight in Motion Descriptor

The direction k of optical flow is assigned based on angle of deviation (θ) between block i and j as

$$k = \lfloor \theta / 45 \rfloor$$

Now, influence weight of block-i on block-j, w_{ij} is computed as,

$$w_{ij} = f. exp(-ed_{ij} / b_i^k)$$

Influence weight, w_{ij} of blocks is calculated for every frame in the video and added with influence weight of previous blocks called Motion Descriptor.

Fig. 1 - Visualization of a block with optical flow movements inside the block

Fig. 2 - Classification of Optical Flow movements inside a block based on direction of movement

Motion Descriptor Pattern Clustering and Nearest Neighbor Search

The **motion influence vector** of the *j-th* block within a frame

$$M_{orien(b_i)}^j = \sum_j w_{ij}$$

Nearest Neighbor Search:

Minimum distance, m_d of deviation of the computed motion descriptor is calculated as,

$$m_d = \forall_c \min n(eucl(c))$$

The block is considered abnormal if m_d is greater than the threshold of acceptance.

Fig. Visualization of detection of abnormal block in nearest neighbor search

Algorithm Development for Motion Descriptor Map

```
Input: K — Set of blocks in the frame
Output: M — Motion Descriptor Map
M is set to zero at the beginning of each frame
For all i in K
th_{b_i} = \max(b_i^k).sizeb_i
For all j \in K where j \neq i
Compute ed_{ij} - Euclidean Distance between block i and j
             if ed_{ii} \leq th_{bi}
Compute direction (k_{ij}), weight (w_{ij}), and orientation (M_{orien_h}^j)
              k_{ij} = [\theta_{ij} / 45] // Angle (\theta_{ij}) between block i and j
             w_{ij} = \exp(-ed_{ij} / b_i^k)
             M_{orien_{b_i}}^j = M_{orien_{b_i}}^j + w_{ij}
             end if
end for
end for
```


Datasets for Performance Evaluation

Figure 1 - Abnormal Crowd Activity detection with locally created dataset

Figure 2 - Abnormal Crowd Activity detection with UMN dataset

Performance of the System

Table 1 – Effects of threshold values in UMN Dataset

Threshold of Acceptance	Performance		
	Accuracy	Recall	Precision
5.8368e-06	82.10	83.69	97.46
8.8292e-05	91.57	91.76	98.73
4.8368e-04	98.94	98.68	100
1.6586e-03	89.47	100	87.34

Table 2 – Effects of number of clusters in UMN Dataset

No of Clusters	Performance		
	Accuracy	Recall	Precision
4	98.94	98.68	100
5	98.17	98.66	98.66
6	98.94	100	92.73
7	98.78	98.68	96.10

Performance of the System cont.

Table 3 – Effects of block division of frames in UMN Dataset

Frame	Performance		
Division	Accuracy	Recall	Precision
8 × 6	98.94	98.68	100
10 × 8	96.35	97.20	99.25

Table 4 – Block level accuracy

Method	Datasets			
	UMN -	UCSD		Created
		Ped 1	Ped 2	Dataset
HOFME [12]	98.52	72.70	87.50	95.04
Proposed Method	98.94	71.32	88.13	98.78

Table 5 – Frame level accuracy

Method	Datasets			
	UMN -	UCSD		Created
		Ped 1	Ped 2	Dataset
HOFME [12]	84.94	86.30	89.50	93.56
Proposed Method	92.35	81.20	91.10	95.60

ITUKALEIDOSCOPE SANTA FE 2018

Thank you

Acknowledgements

Anna University, Chennai, India

