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What is the Internet of Things (loT)?

Is the network of physical objects

Objects endowed with communication,
sensing and processing capabilities

Gives rise to: Smart Cities, Smart
Industries...
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What are the challenges of 10T?

« Dramatic increase in generated traffic

« Leads to congestion of the EM spectrum _Q)_
» Particular characteristics of traffic patterns - f_- -
« Possible solution multiple Radio Access @ %

Technologies (RATS):

— Different advantages and disadvantages

— Reduce congestion
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Which RAT should be used?

4 Cellular Technologies: LPWAN: = )
) LOoRa
+ Global coverage 4G§ Ite + Long range =
+ Long range + Low-power consumption P sigfox
- Operational Costs 5é’° + Use of unlicensed ISM bands
- Oriented for data streams - Very low data rate
\- y /
Bluetooth
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What do we propose”?

 Let loT devices use multiple RATs

« Solve the problem of deciding which RAT to use with Machine Learning
— Consider the potential limitations of each technology
— Maximize prioritized throughput

Santa Fe, Argen%a _ﬂ
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Mathematical model of RATs and IoT nodes

* 10T nodes generate events of different priorities (¢) and length (L)

« Events are generated at a rate of 1 (pkt/s)

« These events are transmitted using any of the N available RATs (a4, a,, ...ay) or
simply discarded (a,)

 Each RAT:

— Presents an usage limitation (u}?4%, u514%, 44X in terms of $/bits/pkts per
day

— Entails a power consumption (cq, ¢y, ... cy) (joules)
— Has its own infinite queue to buffer packets (04, 0,, ... oy)
* 10T nodes are fitted with batteries of b joules
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Reinforcement Learning (RL) approach

* Objective: determining which RAT should be used by an IoT device in any
given situation so as to optimize the prioritized throughput.

« RL jargon: determining the optimal action a to take given a state s so as to
maximize the accumulation of rewards R by the end of the day
— Where s is a complete description of the state of the 10T node (composed of
L,G,b,uq,uU,, ..Uy, 01,05, ...,0y)

— AndR =G

Telay(aD to indirectly maximize prioritized throughput

* Result: a policy. Which is the RL entity that prescribes actions for states.
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Reinforcement Learning (RL) algorithm

* Objective: to derive a policy that determines the
optimal action for each state

™
» Such a policy is modeled with an Artificial Neural SN
Network (ANN) ANV e
- T
« The ANN is fed with the state s of the node and ; =
outputs the optimal action a D0
) ag—t
_/ Qutput Layer 2
(size N)

i Hidden Layer 2
(size 5)

Hidden Layer 1
(size 45)
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Reinforcement Learning (RL) algorithm

® Obj eCtIVE tO derlve a pO'ICy that determlnes the 1e7 Performance Improvement as ES iterates
optimal action for each state

» Such a policy is modeled with an Artificial Neural
Network (ANN)

e The ANN is fed with the state s of the node and
outputs the optimal action a

*  We employ the algorithm known as Evolution e
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Strategies [1] to evolve the ANN (1000 iterations) 0 200 400 0 80 1000

Iteration of the ES algorithm

[1] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a
Scalable Alternative to Reinforcement Learning,” ArXiv e-prints, Mar. 2017.
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Simulations and results (Settings)

— 5G: Spectrum renting scheme (100kbps), usage limitation (1Mb/day)
— LoRa: Spreading Factor 7 (2.43Kbps)
* |oT nodes:

— Generate packets with priorities: G = U(0, 1)

— Generate packets of varying length: L = U(30, 200) bytes
— Designed to last for 3 years with 2AA batteries

E ; « We simulate an 10T network in a Smart City with two RATS:

— Packet generation rates studied: from A = 6—(1)0 tod = 3—10 packets/s

« 3 Alternative policies:
— Priority-based policy
— Random

26-28 Novembﬁ
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Simulations and results (Results)

1e7 Performance vs A for different policies
|

— Proposed policy C
— 5@ first policy

- = Priority-based policy
—— Random policy /
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Simulations and results (Results)

Distribution of RAT vs packet length and priority. Distribution of RAT vs packet length and priority. Distribution of RAT vs packet length and priority.
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Conclusions

* 10T nodes deployed in Smart Cities/Industries may benefit from multiple RAT
« Solve the problem of deciding which RAT to use with Machine Learning

* Such atask is mathematically modeled as a formal RL problem

« Evolution Strategies to solve the RL problem is applied

« A particular scenario with 5G and LoRa (intrinsic limitations) is studied

* The proposed solution and 3 alternative policies are simulated

 The superior performance of RL-based policies for RAT selection is shown

Performance vs A for different policies

Proposed policy =
56G first palicy /
Priarity-based policy

Random policy :/
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Any questions?.




