TUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

A Deep Reinforcement Learning Approach for Data Migration in Multi-access Edge Computing

Dario Bruneo University of Messina, Italy dbruneo@unime.it

Smart services in Smart environments

Multi-access Edge Computing (MEC)

- ETSI standard
- → placing nodes with computation capabilities, *MEC servers*, **close** to the elements of the network edge
- MEC Vs. Fog Computing
 - explicit interaction with network elements
 - (network) information gathering

A 5G MEC-enabled LTE scenario

SANTA FE 2018

Machine learning for a 5G future

Challenges

- Resource allocation
- Application migration (App Containerization)
- Proactive Vs. Reactive approaches

AI-based techniques → Machine Learning

Reinforcement Learning (RL)

• Learning through a trial and error process

UKALEIDOSCOPE

SANTA FE 2018

Machine learning for a 5G future

- Best choice to solve decision making problems
- Markov Decision Process (MDP) formalism
- Q-Learning (model free approach)

$$Q(s,a) = Q(s,a) + \alpha(R(s + \gamma max_{a'}(Q(s',a') - Q(s,a))$$

0.1 0.8 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.

Russel-Norvig Arificial Intelligence: A modern approach – Prentice Hall

SANTA FE 2018

Machine learning for a 5G future

Deep RL

- Q-learning does not converge when the number of states is too large (e.g., 10²⁰)
- Deep RL introduced by DeepMind

 Using a Deep Neural Network (DNN) to predict the Q-values for a given state

Applying Deep RL to MEC LTE scenarios

State \rightarrow user position and app distribution

$$\begin{split} s = < & (UE_{eNB1}, UE_{eNB2}, UE_{eNB3}, \\ & eNB_{app1}^{1}, eNB_{app2}^{1}, eNB_{app3}^{1}, \\ & eNB_{app1}^{2}, eNB_{app2}^{2}, eNB_{app3}^{2}, \\ & eNB_{app1}^{3}, eNB_{app2}^{3}, eNB_{app3}^{3}, \\ & Mec_{app1}^{1}, Mec_{app2}^{1}, Mec_{app3}^{1}, \\ & Mec_{app1}^{2}, Mec_{app2}^{2}, Mec_{app3}^{2}, \\ & Mec_{app1}^{2}, Mec_{app2}^{2}, Mec_{app3}^{2}, \\ & Mec_{app1}^{3}, Mec_{app2}^{3}, Mec_{app3}^{3}, \\ & Mec_{app3}^{3}, Mec_{app$$

Actions \rightarrow app migration

Actions = $[a_1, a_2, a_3, ..., a_{Z}]$

 $Z = kN k \cdot kM k$

 $N \rightarrow$ set of MEC/Cloud servers

 $M \rightarrow$ set of Applications

Reward → combination of network performance indexes

$$D^{app_{i}} = \tilde{\Theta} \frac{\text{Received}_{THR}}{\text{Sent}_{THR} \cdot \text{packetSize}}$$

$$\checkmark$$

Percentage of received data

ITUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

The proposed algorithm

Algorithm 1: Deep RL 1 initialize experience replay memory E to $\{\}$ 2 random initialize main DNN network weights θ 3 set target DNN network weights $\hat{\theta}$ equal to θ 4 set discount factor γ Init 5 set batch size 6 set update step U7 set waiting time t 8 set exploration rate ϵ 9 set decay rate d 10 for episode = 1 to end: observe current state s_i 11 p = random([0,1])12 action selection if $\epsilon > p$: 13 action = $random([1, \mathbb{Z}])$ 14 else: 15 action = $argmax(Q(s_i, \theta))$ 16 end if 17 execute the action 18 action wait(x seconds) 19 execution observe the new state s_{i+1} 20 observe the reward *r* 21 store the t-uple $(s_i, action, s_{i+1}, r)$ in E 22 sample a *batch* from *E* 23 $y = Q(s_i, \theta)$ 24 DNN $y_{target} = \widehat{Q}(s_{j+1}, \widehat{\theta})$ 25 training $y_{action} = \mathbf{r} + \gamma \cdot max(y_{target})$ 26 execute one training step on main DNN network 27 every U steps set $\hat{\theta} = \theta$ 28 29 end for

Creating a Deep RL environment for MEC

Deep RL engine

ITUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

MEC-LTE environment

- OMNeT++
 - iNet
 - SimuLTE → MEC extension

Configuration Parameters	
Number of users	9
User mobility	RandomWayPointMobility
User speed	$1.5 \mathrm{~mps}$
Number of applications	3
Application type	UDP ConstantBitRate
Packet size	1500 B
Simulation Time	420 seconds

ITUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

Deep RL engine

- Keras on top of TensorFlow
 - build complex neural network
 topologies with just a few lines of
 code
 - keeping the power of the neural network engine that runs underneath

OMNeT++ (C++) and Keras (Python) have been integrated by implementing a mechanism to let them communicate using text files

DNN parameters		
Number of hidden layers	3	
Number of neurons	15	
Input dimension	21	
Output dimension	9	
Learning rate	0.001	
Activation function	ReLU	
Update step	50	
Batch size	32	
Experience replay dimension	2000	

SANTA FE 2018

Machine learning for a 5G future

Experimental results

Percentage of received data - D

- 3 eNBs
- 9 UE
- 3 MEC Servers
- 3 Applications (CBR)
- Random walk (walking speed)
- Training for 25,000 simulation seconds

Comparison with a «static» policy where no App migration is performed No policy: Deep RL: 0.8 0.6 0.4 The Deep RL algorithm is able The Deep RL algorithm 0.2 outperforms the «static» to promptly react to wrong policy actions 0 200 300 100 400

Simulation time (sec)

Conclusions and Future Work

- We presented a machine learning approach to address the problem related to the network environment dynamics in a 5G MEC-enabled LTE scenario
- We designed a Deep RL algorithm and tested it in a real scenario demonstrating the feasibility of the technique
- Future works will be devoted to:
 - better integration between OMNeT++/SimuLTE and Keras/TensorFlow
 - analysis of more complex scenarios
 - comparison with other solutions

TUKALEIDOSCOPE SANTA FE 2018

Thank you