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 5G networks and services will increase exponentially in
data traffic, storage and processing.

« Smartphones as gateways to remotely access resources
through cloud computing.

« Several challenges should be addressed to further
advance cloud computing in order to serve as a basis to
Integrate 5G components and protocols.

« For cloud computing datacenters, main research
challenges could be addressed by designing
management solutions based on Machine Learning (ML)
techniques.
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 Large-scale infrastructures providing computational
services.

* Energy consumption, carbon emissions,

as

Quality of Service
— High availability
— Security

Resource Management
— Resource Allocation
— Resource Adaptation
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Virtual Machine Placement (VMP)
Which virtual machines should be located at each physical machine?

Virtual Machines (VMs)

A A 0 3 S 5

Virtual Infrastructure
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VMP Problem

Broker-oriented

|
Multi-Cloud

Provider-oriented

Single-Cloud Distributed-Cloud

Federated-Cloud

RN VRN RN
Offtine Online Offline Online Offtine Online
| | | | | |
[89] [121] 26] [15] RO [39] [105] RO

» VMP for Cloud Computing under uncertainty:
Provider-oriented VMP in Federated-Cloud Deployments.
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» VMP for Cloud Computing under uncertainty:
MAM Optimization, Heuristics + Meta-Heuristics and Multiple Objectives.

Technique | Approach Objective Functions

Deterministic MOP
Aoorith MAM [6, 131] | [6, 129] RO RO [129, 131]
goruims PMO RO RO RO RO RO

[125] [55] 84]
Heuristics 20, 61] | [121, 146] | [20, 21]
RO RO RO
[105] [142] RO
cUTISHes /80, 100] | RO [51]

Aomromimation MOD 148] RO RO RO RO
‘j} ” MAM [43] RO RO RO RO
goruims PMO RO RO RO RO RO
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2 Deployment Models

Platform as a Service
(Paa$)

— o 1. Private cloud
2. Community cloud
3. Public cloud
4. Hybrid cloud

CLOUD
COMPUTING

9 Infrastructure as a Service
(laaS$)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal management effort or
service provider interaction. This cloud model is composed of 5 essential
characteristics, 3 service models, and 4 deployment models [107].
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« Placement of Cloud Services, mostly composed by more than
just one VM towards a Software-Defined Datacenter.

« Consider relevant characteristics of Infrastructure as a
Service model of Cloud Computing for the VMP problem such

us:
— On-Demand Self-Service (dynamic)
— Rapid Elasticity (dynamic)

* Most relevant dynamic parameters in VMP problems are [112]:
— Resource Capacities of VMs (vertical elasticity)
— Number of VMs of a Cloud Service (horizontal elasticity)
— Utilization of Resources of VMs (overbooking)
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« laaS environments for provider-oriented VMP problems could
be classified by one or more of the following classification

criteria [112]:

0. no elasticity 0. no overbooking
1. horizontal elasticity 1. server resources overbooking
2. vertical elasticity 2. network resources overbooking

3. both horizontal and vertical elasticity 3. both server and network overbooking

« The are 16 possible VMP environments for Cloud Computing.
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« laaS environments for provider-oriented VMP problems
could be classified by one or more of the following
classification criteria [112]:

Elasticity Overbooking
1. horizontal elasticity 1. server resources overbooking
2. vertical elasticity 2. network resources overbooking

3. both horizontal and vertical elasticity 3. both server and network overbooking
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 AVMP problem formulation for the optimization of:
Power Consumption
Economical Revenue

Quiality of Service AlIIII % .

a i;”";!

i Quality of Service

W

Resource Utilization

* Online Algorithms: Heuristics
« Offline Algorithms: Meta-Heuristics
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(Online) A4: First-Fit Decreasing
(Online) A2: Best-Fit (Online) A5: Best-Fit Decreasing
(Online) A3: Worst-Fit (Offline) A6: Memetic Algorithm

Table 5.2: Objective Funetion Costs of Evaluated Algorithms.

w Al: FF | A2: BF | A3: WF | A4: FFD | A5: BFD | A6: MA
Workload
Wi: Poisson x=10 | 3.2927 3.3098 3.5250 3.0205 3.1392 2.6096
Wy: Poisson x=50 | 2.4602 2.5112 2.4811 2.4602 2.4555 2.0001
W3: Poisson x=70 | 1.7054 1.6458 1.7054 1.6458 1.6458 1.3588
Wy: Uniform 3.1875 3.1556 3.0489 3.0907 3.1556 2.3420
Average 2.6615 2.6556 2.6901 2.5543 2.5990 2.0776
Ranking oth 4th 6th 2nd 3th 1st

TN
s
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e better quality of ¢ not appropriate

_ solutions when for highly
offllr.\e.meta- comparing to online  dynamic
heuristic (A6) alternatives. environments of

VMP problems:

* short executiontime ¢ online decisions

online heuristics unknown cloud negatively affects
(A1 - A5) service requests are the quality of
considered. solutions.
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Algorithm Advantages Disadvantages

better quality of |* not appropriate
solutions when for highly
comparing to online dynamic

alternatives. environments of
VMP problems:

offline meta-
heuristic (A6)

 online decisions
negatively affects
the quality of
solutions.

short execution time

online heuristics ° unknown cloud
(A1 - A5) service requests are

considered.
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Algorithm

offline meta-
heuristic (A6)

Advantages Disadvantages

e better quality off-
solutions when
comparing to online
alternatives.

not appropriate
for highly
dynamic

environments of
VMP problems:

 online decisions

negatively affects
the quality of
solutions.

short execution time
 unknown cloud

service requests are
considered.

online heuristics
(A1 - A5)
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Algorithm Advantages Disadvantages
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VMP problems:
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laaS environments for provider-oriented VMP problems

online incremental VMP (iVMP)
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laaS environments for provider-oriented VMP problems

online incremental VMP (iVMP)

[156]
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« laaS environments for provider-oriented VMP problems
could be classified by one or more of the following
classification criteria [112]:

0. no elasticity 0. no overbooking
1. horizontal elasticity 1. server resources overbooking
2. vertical elasticity 2. network resources overbooking

3. both horizontal and vertical elasticity 3. both server and network overbooking
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 AVMP problem formulation for the optimization of:
1. Power Consumption

2. Economical Revenue 2,4 $
3. Resource Utilization hay W III
4. Reconfiguration Time Al I

« Uncertain parameters considered:

1. Virtual resources capacities (vertical elasticity)

2. Number of VMs in cloud services (horizontal elasticity)
3. Utilization of virtual CPU / RAM (server overbooking)
4. Utilization of networking virtual (network overbooking)
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VMPr VMPr
Triggered Recovered
81 ) S1 82 82 81 Sz
iVMP create V, scale-up V, createV,  scale-out (+ V) scale downV; ' | destroy
i i+ .y iy oy Z
(online) et it ]+ 7

:-_'_‘I"l LY V2 Vg

\ Va Ve Vs N
J T | T : } . -
Incrementally find ‘ 1 2 ‘ 3 4 ‘ 5 ) )
| t of V(t) f i : ynamic
placement o (t) or P(1) P€2) P(3) Pi4) pqs) P(6) placement

next discrete time t+1
solution

L.

Triggered according to

T --———————————

VMPr Triggering method P'(2) U P(5)
VM Pr *'(2) Recovered according to
; (offline) : Manager| vMPr Recovering method
+ Recalculate placement i
i of V(t) through VM | ;
; migrations E :
recalculation time reconfiguration timeY

Figure 1: Two-phase optimization scheme for VMP problems considered in this work, presenting a basic example with a placement recalculation time of g = 2
(from# = 2 tot = 4) and a placement reconfiguration time of ¥ = 1 (from 7= 4 tor = 5).
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Figure 1: Two-phase optimization scheme for VMP problems considered in this work, presenting a basic example with a placement recalculation time of g = 2
(from# = 2 tot = 4) and a placement reconfiguration time of ¥ = 1 (from 7= 4 tor = 5).
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when or under which circumstances the VMPr phase should be

I ?
triggered: VMPr vmPr
Triggered Recovered
S, S, S, S, S, S,
iVMP create V, scale-up V, create V, " scale-out (+ Va) " scaledown V, ' | destroy
(online) it 7 it [ -+ -
Vy . Vi Va Ve Va o Yy LY V2 Vg o
, ' ' 5 Y g
Incrementally find ‘ 1 2 3 4 ‘ 5 ®
lacement of V(t) for ' ! ! dynamic
r?exi discrete tirrge) t+1 P() Pt2) PE) Pi) P P(6) placement
solution
Triggered according to
VMPr Triggering method P'(2) U P(5)

VMPr
(offline)

Recalculate placement
of V(t) through VM
migrations

<l
-

recalculation time /

Figure 1: Two-phase optimization scheme for VMP problems considered in this work, presenting
(from# = 2 tot = 4) and a placement reconfiguration time of ¥ = 1 (from 7= 4 tor = 5).
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a basic example with a placement recalculation time of g = 2
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what should be done with cloud service requests arriving during

recalculation time?

iVMP
(online)

Incrementally find
placement of V(t) for
next discrete time t+1

VMPr
Triggered
81 S1 82 82
create V, scale-up V, create V,  scale-out (+ Vg) '
——- — ——— -
i+ m o+ it
Wy Wy Vs Vs Vg

VMPr
Recovered

scale down V, ~ | destroy

¥ v= V3

Triggered according to
VMPr Triggering method

VMPr
(offline)

Recalculate placement
of V(t) through VM
migrations

L L ‘ -
i | -
? ? A )
P{a) L Pi5) L P(6) placement

dynamic

solution

P'(2) U P(5)

@ Recovered according to

Manager| VMPr Recovering method

L b k. ” sttt

< >e—>

recalculation time //

reconfiguration time”Y

Figure 1: Two-phase optimization scheme for VMP problems considered in this work, presenting a basic example with a placement recalculation time of 5 = 2
(fromz = 2 to ¢ = 4) and a placement reconfiguration time of y = | (fromt=4toz = 5)
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Reference Overbooking Type Elasticity Type VMPr Recovering
20 CPU Not Considered Periodically Cancellation
[151] Not Considered Not Considered Periodically Not Considered
46 Not Considered Not Considered Periodically Not Considered
8T Not Considered Not Considered Periodically Not Considered
44 CPU and RAM Not Considered Periodically Not Considered
[156] Not Considered Not Considered Periodically Not Considered
[132] Not Considered Not Considered Continuously Not Considered

3 CPU Not Considered N/A

123 CPU. RAM and Network Not Considered Threshold- based N/A
137 CPU Horizontal Threshold-based N/A

This work | CPU, RAM and Network | Vertical and Horizontal Prediction-based Update-based
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Reference Overbooking Type Elasticity Type VMPr Triggering | VMPr Recovering
20 CPU Not Considered Periodically Cancellation
[151] Not Considered Not Considered Periodically Not Considered
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Reference Overbooking Type Elasticity Type VMPr Triggering | VMPr Recovering
20 CPU Not Considered Periodically Cancellation
[151] Not Considered Not Considered Periodically Not Considered
46 Not Considered Not Considered Periodically Not Considered
8T Not Considered Not Considered Periodically Not Considered
44 CPU and RAM Not Considered Periodically Not Considered
[156] Not Considered Not Considered Periodically Not Considered
[132] Not Considered Not Considered Continuously Not Considered
13 CPU Not Considered Threshold-based N/A
123 CPU. RAM and Network Not Considered Threshold-based N/A
137 CPU Horizontal Threshold-based N/A

This work | CPU, RAM and Network | Vertical and Horizontal Update-based

A contribution:
A novel prediction-based VMPr Triggering method to decide when or under what
circumstances the VMPr phase should be triggered.
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« Considers main weaknesses of existing VMPr Triggering
methods.

« Considers Double Exponential Smoothing (DES) [63] as
a statistical technique for predicting values of the
objective functions.

 Predicts the next values of objective functions and
triggers the VMPr phase in case objectives are predicted
to consistently increase (in a minimization context).

26-28 N b{' F (]‘ '/”/ AP
SantaFZV:rrr;)eQ‘a Huang e :. {o%c\pra mﬂpn gs;d ,.:.'.,T.‘,.=

“



KALEIDOSCOPE

SANTAFE

Machine learning for a 5G future

ML for VMPr Triggering:

— RQ 1: which ML techniques could be considered
more appropriate for VMPr Triggering
methods?

— RQ 2: how important is to accurately predict when to
trigger a VMPr phase in VMP problems?

— RQ 3: rather than predicting future objective function
values, what other parameters could be
evaluated for VMPr Triggering methods?
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ML for Network Management:

— RQ 4: which ML techniques could be considered
more appropriate for predicting Network Routing
Reconfiguration (NRR) as part of VMP problems in
SDN implementations?

— RQ 5: which ML techniques could be considered
more appropriate for clustering VMs for supporting
placement decisions?
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