ITUKALEIDOSCOPE SANTA FE 2018

Machine learning for a 5G future

Pattern recognition

Juan Pablo Martín Universidad Tecnológica Nacional jpmartin@gicom.com.ar



Machine learning for a 5G future

The general problem can be written as:

 $\begin{cases} \omega_0: x = b & \text{hypothesis "noise alone"} \\ \omega_1: x = b + s & \text{hypothesis "signal + noise"} \end{cases}$

The aim is to build a classifier d, or a decision rule d which minimizes a criteria (e.g. the error probability)

$$P_e(d) = P(d(\boldsymbol{X}) \neq Y)$$

where X is an observation and is Y the associated hypothesis.

The strategy to design a solution to this problem depends on the nature of the available information on the problem

Resolution Approaches

Rule based

- If X is grey and weight(X) > 1000, then
 - X is an elephant
- else
 - X is a mouse
- Needs and expert to translate knowledge into **rules**; are complex, long, not reliable.

 $\mu_0 = 0$

α

 $\mu_1 = 7,2$

Hypothesis testing

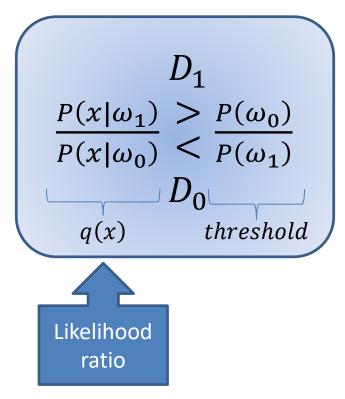
$$\begin{pmatrix} H_0 : X \in \omega_0 & X \sim p(X|\omega_0) \\ H_1 : X \in \omega_1 & X \sim p(X|\omega_1) \end{pmatrix}$$

Bayes test

 $\begin{cases} H_0: X \in \omega_0 & X \sim p(X|\omega_0) \\ H_1: X \in \omega_1 & X \sim p(X|\omega_1) \end{cases}$

$$P_{e} = P(D_{0}|\omega_{1})P(\omega_{1}) + P(D_{1}|\omega_{0})P(\omega_{0})$$

minimize
$$D_{1}$$
$$P(x|\omega_{1})P(\omega_{1}) \stackrel{>}{<} P(x|\omega_{0})P(\omega_{0})$$
$$D_{0}$$



Bayes test – Example: Gaussian case

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\left{\begin{array}{c}
\end{array}\\
\end{array} \\
\left{\begin{array}{c}
\end{array}\\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}\\
\end{array}} \\
\left{\begin{array}{c}
\end{array}\\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}\\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array}} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\end{array} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\end{array} \\
\end{array}$$
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\end{array}} \\
\end{array}
\left{\begin{array}{c}
\end{array}} \\
\end{array} \\
\left{\end{array} \\
\end{array}
\left{\end{array}

} \\
\end{array} \\
\left{\end{array} \\
\end{array}
\left{\end{array}

} \\
\left{\end{array} \\
\end{array}
\left{\end{array}

\left{\end{array}

} \\
\left{\end{array}

} \\
\left{\end{array}

\left{} \end{array}

\left{\end{array}

\left{}
\end{array} \\
\end{array}
\left{} \end{array}

\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \end{array}

\left{} \\
\end{array}
\left{} \end{array}

\left{} \\
\end{array}
\left{} \end{array}

\left{} \end{array}

\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \\
\end{array}
\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \end{array}

\left{} \\

\left{} \end{array}

\left{} \\

\left{} \end{array}

\left{} \end{array}

\left{} \\

\left{} \end{array}

\left{} \end{array}

\left{} \\

\left{} \end{array}

\left{} \\

\left{}
\end{array}

\left{} \\

\left{} \\

\left{

Real World Problems

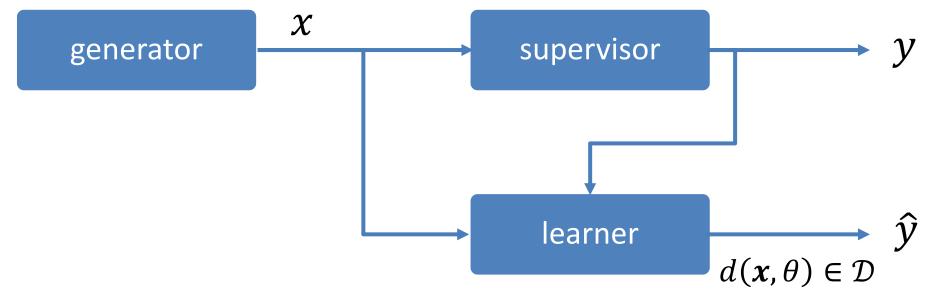
Knowing the distribution function

• $p(X|\omega_0)$ and $p(X|\omega_1)$ has to be known ...

If that is not the case

- Can asume that
 - $p(X|\omega_0)$ and $p(X|\omega_1) \subset \mathcal{F}_{\theta}$
- \bullet then estimate θ based on data and plugin the estimator in the decision rule

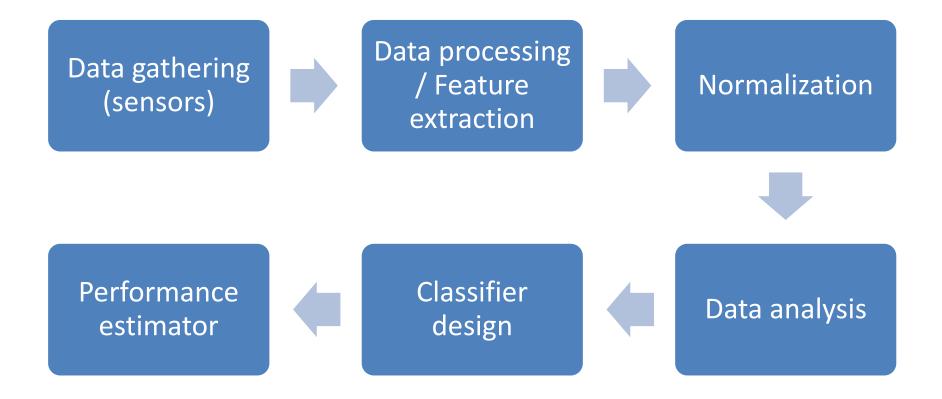
Learning Model



The knowledge of the probabilistic model is replaced by

 $A_n = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \leftarrow \text{training set of data}$

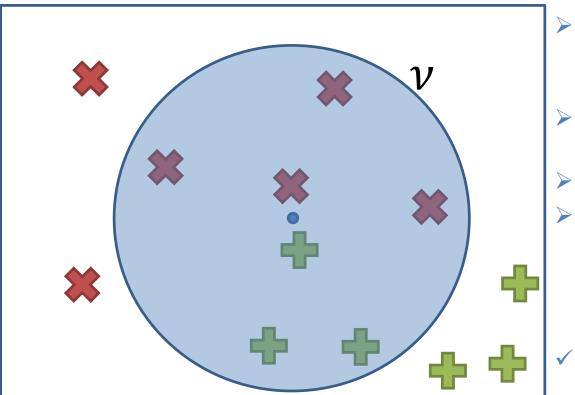
Non Parametric Methods



Non Parametric Methods

k-nearest neighbor estimator

kNN Method

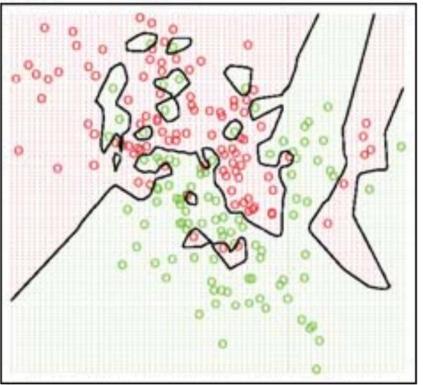


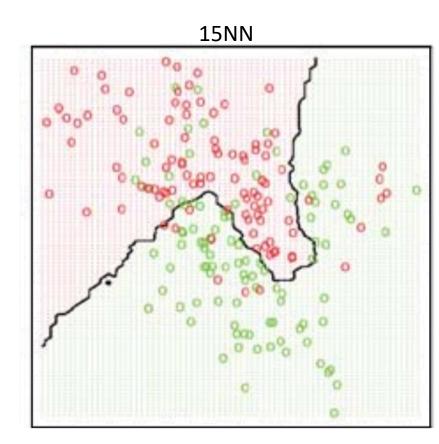
- Centered at the unlabeled sample a spherical volumen
 v is enlarged
- when k samples fall inside the volumen
- the proportion is counted
- the new sample is labeled with the most occurent class.
 - For the two classes, k should be odd.

Machine learning for a 5G future

Examples

1NN





Support Vector Machines

Problem of Functional Learning

Find within $\mathcal{D} = \{d(x, \theta) : \theta \in \Theta\}$, the function which gives the best approximation of *y* according to a risk functional

$$J(d) = \int Q(\underline{d(\mathbf{x},\theta)}, y)p(\mathbf{x}, y) \, d\mathbf{x} \, dy$$

$$\hat{y}$$

where Q expresses the cost associated with each couple (x, y). Example of a cost function: error probability

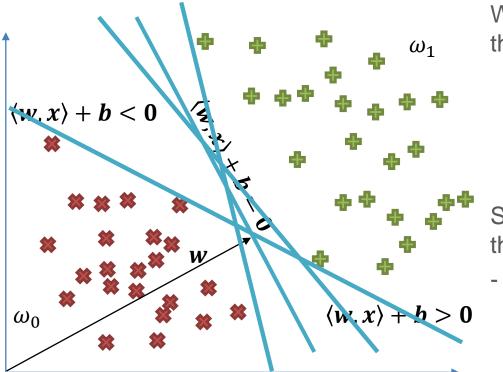
$$P_e(d) = \int \mathbb{1}_{d(x,\theta) \neq y} p(x, y) \, dx \, dy$$

Problem of Functional Learning

As the density p(x, y) is unknown, the minimization of J(d) is done by plugging an estimator; the empirical risk

$$J_{emp}(d) = \frac{1}{n} \sum_{k=1}^{n} Q(d(\boldsymbol{x}_k, \boldsymbol{\theta}), \boldsymbol{y}_k)$$
$$P_{emp}(d) = \frac{1}{2n} \sum_{k=1}^{n} |\boldsymbol{y}_k - \underline{d(\boldsymbol{x}_k, \boldsymbol{w}, \boldsymbol{b})}_{\hat{y}}$$

Induction principle



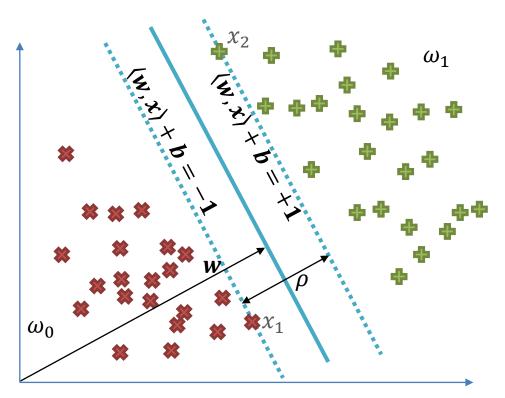
Which separating hyperplane is the best choise?

Should be the one that maximizes the margin!

- Vapnik (1965, 1992)

Machine learning for a 5G future

Margin Calculation



$$\rho = \left\langle \frac{w}{\|w\|}, x_2 - x_1 \right\rangle = \frac{2}{\|w\|}$$

Maximizing the margin, is equivalent to:

• minimizing
$$\frac{1}{2} ||w||^2$$

under the constrains $y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) \ge 1,$ $1 \le i \le n$

Only valid for linerarly separable classes

Minimization (Lagrange Multipliers)

Minimizing a convex function f(x) under the constrains $g_i(x) \le 0, i = 1, ..., n$ is equivalent to finding the saddle point of the Lagrangian:

$$L(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \sum_{i=1}^{n} \alpha_i g_i(x)$$

Optimality conditions made with respect to the Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \alpha_i \{y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1\}, \qquad \alpha_i \ge 0$$

Results in null derivatives with respecto to the primal and dual variables:

$$\frac{\partial}{\partial w}L(w, b, \alpha) = 0 \text{ and } \frac{\partial}{\partial b}L(w, b, \alpha) = 0$$

Dual problem to solve:
$$\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} = 0 \text{ and } w^{*} = \sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}$$

Support Vectors

The optimum separator is:

$$\boldsymbol{w}^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

 $\forall i$

According to the Karush-Kuhn-Tucker conditions: $\alpha_i^* \{y_i(\langle w^*, x_i \rangle + b^*) - 1\} = 0,$

Two possible cases:

- 1. $y_i(\langle w^*, x_i \rangle + b^*) > 1$ Then $\alpha_i^* = 0$, meaning that x_i is not used to calculate w^* .
- 2. $y_i(\langle w^*, x_i \rangle + b^*) = 1$ Then $\alpha_i^* \neq 0$ and x_i is on the margin.

Machine learning for a 5G future

Linearly Separable Solution

The optimum separator is:

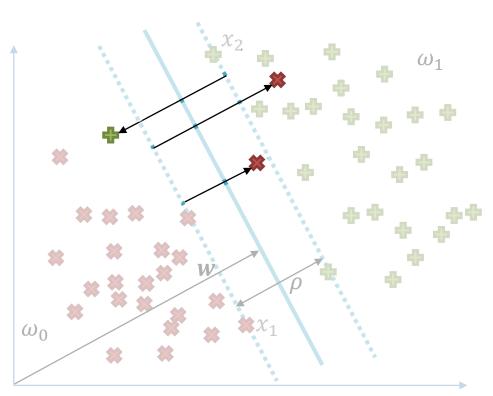
$$\boldsymbol{w}^* = \sum_{sv} \alpha_i^* y_i x_i$$

The decisión rule is:

$$d(\mathbf{x}, \boldsymbol{\alpha}^*, b^*) = sign\left(\sum_{sv} \langle \mathbf{x}, \mathbf{w}^* \rangle + b^*\right)$$

$$d(\mathbf{x}, \boldsymbol{\alpha}^*, b^*) = sign\left(\sum_{sv} \alpha_i^* y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b^*\right)$$

Classes not linearly separable



- The problem formulation has to be modified.
- Missclassified data is penalized.
 - A cost related to the distance from the sample to the margin is considered.
- A new f(x) is minimized

 $\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i, \qquad C \ge 0$

Penalizes missclassified samples

Non Separable Solution

• A new f(x) is minimized

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i, \qquad C \ge 0$$

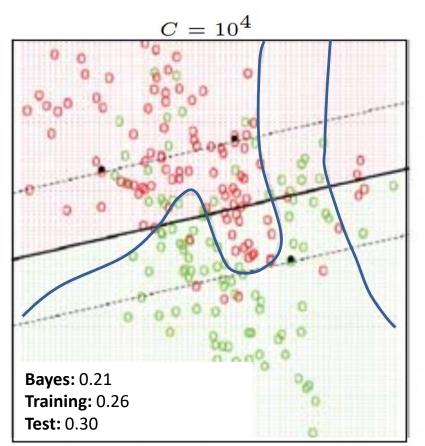
• Under the constraints

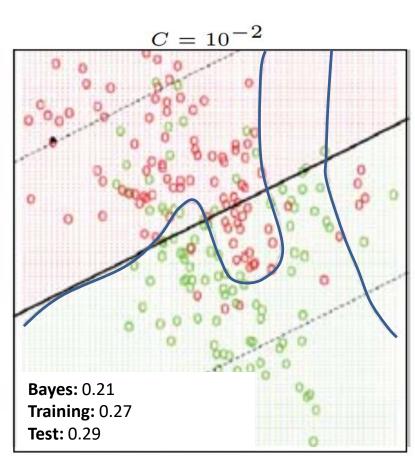
 $y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i, \qquad \xi_i \ge 0, 1 \le i \le n$

- **C large**: small margin, less training errors.
- **C small**: large margin, more training errors.

Machine learning for a 5G future

Examples





Non-linear Classification

Linear classifiers have limited capabilities.

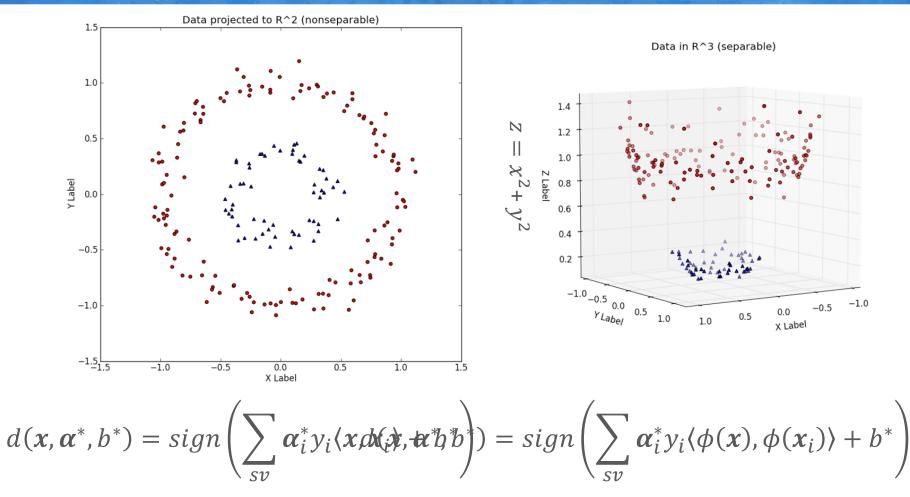
Can be implemented after a non-linear transformation,

$$\boldsymbol{x} \rightarrow \boldsymbol{\phi}(\boldsymbol{x}) = [\phi_1(\boldsymbol{x}), \phi_2(\boldsymbol{x}), \dots]^T$$

where $\phi_i(x)$ are non-linear functions.

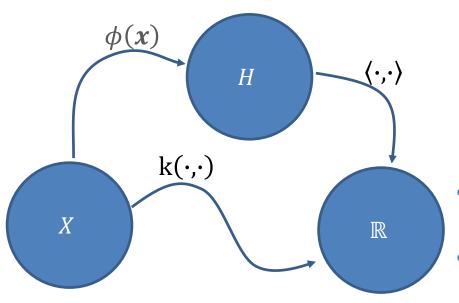
A linear classifier with respect to $\phi(x)$ is non-linear with respect to *x*.

Machine learning for a 5G future



Machine learning for a 5G future

Kernel Trick



$$\forall \mathbf{x}, \mathbf{x}' \in \mathbf{X}$$
$$\mathbf{x}(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}$$

- Almost no conditions on X
- No need for dot product
- No nned to know $\phi(x)$.

Machine learning for a 5G future

Kernel	Trick		
EVIE P		$d(\mathbf{x}, \boldsymbol{\alpha}^*, b^*)$	—

$$l(\mathbf{x}, \boldsymbol{\alpha}^*, b^*) = sign\left(\sum_{sv} \boldsymbol{\alpha}_i^* y_i k(\mathbf{x}, \mathbf{x}_i) + b^*\right)$$

Projective kernels		Radial kernels	
Monomial of degree q	$\langle x, x' angle^q$	Gaussian	$exp\left(-\frac{1}{2\sigma_0^2}\ x-x'\ ^2\right)$
Polynomial of degree q	$(1 + \langle x, x' \rangle)^q$	Exponential	$exp\left(-\frac{1}{2\sigma_0^2}\ x-x'\ \right)$
Sigmoidal	$\frac{1}{n_0} tanh(\beta_0 \langle \boldsymbol{x}, \boldsymbol{x}' \rangle - \alpha_0)$	Uniform	$\frac{1}{\eta_0} \mathbb{1} \ x - x' \ \le \beta_0$
and also: • $k_1(x, x') + k_2(x, x')$		Epanechnikov	$\frac{1}{\eta_0}(\beta_0^2 - \ \mathbf{x} - \mathbf{x}'\ ^2) \mathbb{1}_{\ \mathbf{x} - \mathbf{x}'\ \le \beta_0}$
		Cauchy	$\frac{1}{\eta_0} \frac{1}{1 + \ x - x'\ ^2 / \beta_0^2}$

• $k_1(x, x'). k_2(x, x')$

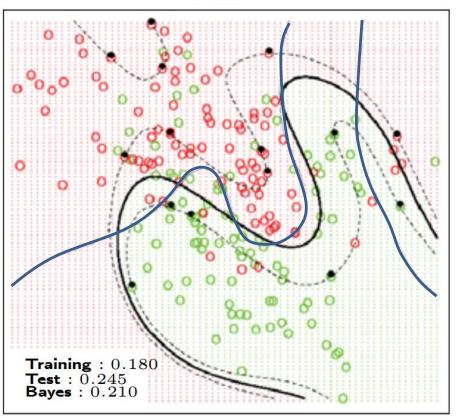
26-28 November Santa Fe, Argentina

. . .

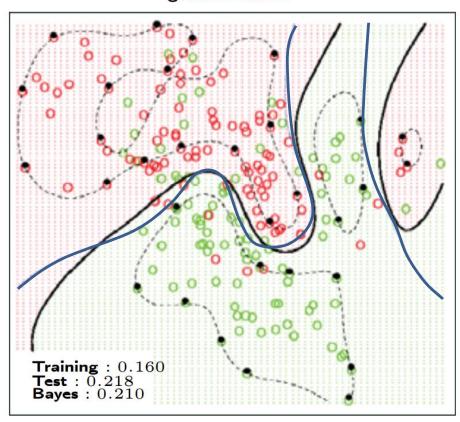
Fontanartog

Examples

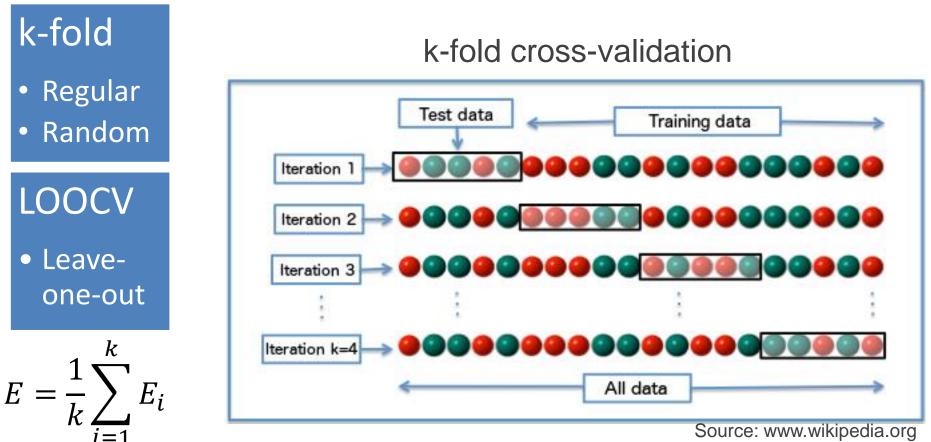
polynome

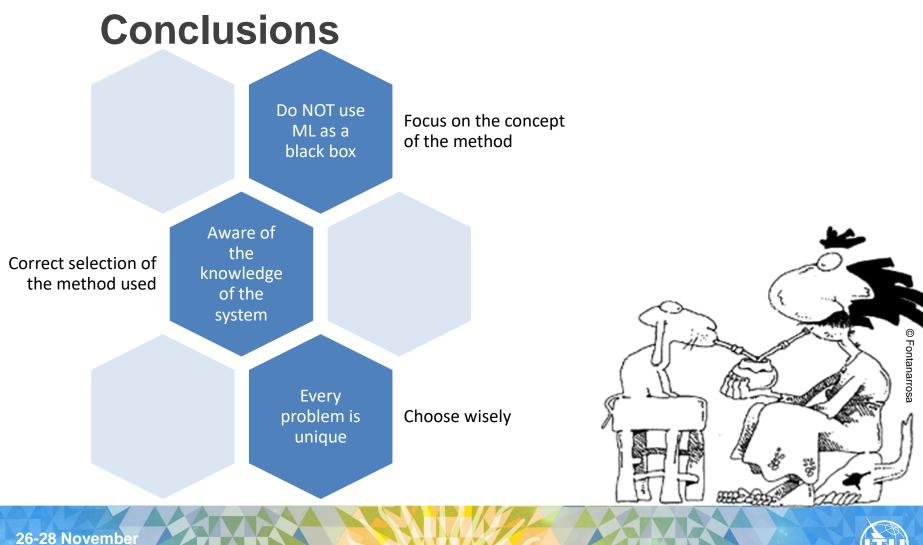


gaussian kernel



Parameter Tunning





Santa Fe, Argentina

Machine learning for a 5G future

Thank you

